| | |
| | | X[i*INCX] *= ALPHA; |
| | | } |
| | | |
| | | __kernel void mask(int n, __global float *x, __global float *mask, int mod) |
| | | { |
| | | int i = get_global_id(0); |
| | | x[i] = (mask[(i/mod)*mod]) ? x[i] : 0; |
| | | } |
| | | |
| | | __kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY) |
| | | { |
| | | int i = get_global_id(0); |
| | |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/alexnet.cfg"); |
| | | network net = parse_network_cfg("cfg/trained_alexnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_detection() |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet_test.cfg"); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | clock_t time; |
| | | char filename[256]; |
| | | int indexes[10]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | image im = load_image_color(filename, 256, 256); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | |
| | | return 0; |
| | | } |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
| | |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | test_parser(); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include <math.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | cost_layer *make_cost_layer(int batch, int inputs) |
| | | COST_TYPE get_cost_type(char *s) |
| | | { |
| | | if (strcmp(s, "sse")==0) return SSE; |
| | | if (strcmp(s, "detection")==0) return DETECTION; |
| | | fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s); |
| | | return SSE; |
| | | } |
| | | |
| | | char *get_cost_string(COST_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case SSE: |
| | | return "sse"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | } |
| | | return "sse"; |
| | | } |
| | | |
| | | cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type) |
| | | { |
| | | fprintf(stderr, "Cost Layer: %d inputs\n", inputs); |
| | | cost_layer *layer = calloc(1, sizeof(cost_layer)); |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->type = type; |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | layer->output = calloc(1, sizeof(float)); |
| | | #ifdef GPU |
| | |
| | | if (!truth) return; |
| | | copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1); |
| | | axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1); |
| | | if(layer.type == DETECTION){ |
| | | int i; |
| | | for(i = 0; i < layer.batch*layer.inputs; ++i){ |
| | | if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0; |
| | | } |
| | | } |
| | | *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); |
| | | } |
| | | |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | cl_kernel get_mask_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/axpy.cl", "mask", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void mask_ongpu(int n, cl_mem x, cl_mem mask, int mod) |
| | | { |
| | | cl_setup(); |
| | | cl_kernel kernel = get_mask_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(mask), (void*) &mask); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(mod), (void*) &mod); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {n}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | } |
| | | |
| | | void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth) |
| | | { |
| | | if (!truth) return; |
| | |
| | | copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1); |
| | | axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1); |
| | | |
| | | if(layer.type==DETECTION){ |
| | | mask_ongpu(layer.inputs*layer.batch, layer.delta_cl, truth, 5); |
| | | } |
| | | |
| | | cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs); |
| | | *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); |
| | | //printf("%f\n", *layer.output); |
| | |
| | | #define COST_LAYER_H |
| | | #include "opencl.h" |
| | | |
| | | typedef enum{ |
| | | SSE, DETECTION |
| | | } COST_TYPE; |
| | | |
| | | typedef struct { |
| | | int inputs; |
| | | int batch; |
| | | float *delta; |
| | | float *output; |
| | | COST_TYPE type; |
| | | #ifdef GPU |
| | | cl_mem delta_cl; |
| | | #endif |
| | | } cost_layer; |
| | | |
| | | cost_layer *make_cost_layer(int batch, int inputs); |
| | | COST_TYPE get_cost_type(char *s); |
| | | char *get_cost_string(COST_TYPE a); |
| | | cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type); |
| | | void forward_cost_layer(const cost_layer layer, float *input, float *truth); |
| | | void backward_cost_layer(const cost_layer layer, float *input, float *delta); |
| | | |
| | |
| | | char *labelpath = find_replace(path, "imgs", "det"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | FILE *file = fopen(labelpath, "r"); |
| | | if(!file) file_error(labelpath); |
| | | int x, y, h, w; |
| | | while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){ |
| | | int i = x/box_width; |
| | |
| | | float dw = (float)(y%box_width)/box_width; |
| | | float sh = h/scale; |
| | | float sw = w/scale; |
| | | //printf("%d %d %f %f\n", i, j, dh, dw); |
| | | int index = (i+j*num_width)*5; |
| | | truth[index++] = 1; |
| | | truth[index++] = dh; |
| | |
| | | truth[index++] = sh; |
| | | truth[index++] = sw; |
| | | } |
| | | fclose(file); |
| | | } |
| | | |
| | | void fill_truth(char *path, char **labels, int k, float *truth) |
| | |
| | | } |
| | | } |
| | | |
| | | data load_data_detection_random(int n, char **paths, int m, char **labels, int h, int w, int nh, int nw, float scale) |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | |
| | | void free_data(data d); |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w); |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w); |
| | | data load_data_detection_random(int n, char **paths, int m, char **labels, int h, int w, int nh, int nw, float scale); |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale); |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); |
| | | data load_cifar10_data(char *filename); |
| | | data load_all_cifar10(); |
| | |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |
| | | cost_layer *layer = make_cost_layer(net->batch, input); |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | cost_layer *layer = make_cost_layer(net->batch, input, type); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | |
| | | void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[cost]\n"); |
| | | fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type)); |
| | | if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |