| | |
| | | new_pool = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | for hs in hash_size: |
| | | new_pool['card_hash_%d' % hs] = np.NaN |
| | | new_pool['set_hash_%d' % hs] = np.NaN |
| | | #new_pool['art_hash_%d' % hs] = np.NaN |
| | | for ind, card_info in card_pool.iterrows(): |
| | | if ind % 100 == 0: |
| | |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | | continue |
| | | |
| | | set_img = card_img[575:638, 567:700] |
| | | #cv2.imshow(card_info['name'], set_img) |
| | | # Compute value of the card's perceptual hash, then store it to the database |
| | | #img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | img_card = Image.fromarray(card_img) |
| | | img_set = Image.fromarray(set_img) |
| | | for hs in hash_size: |
| | | card_hash = ih.phash(img_card, hash_size=hs) |
| | | set_hash = ih.whash(img_set, hash_size=hs) |
| | | card_info['card_hash_%d' % hs] = card_hash |
| | | card_info['set_hash_%d' % hs] = set_hash |
| | | #print('Setting set_hash_%d' % hs) |
| | | #art_hash = ih.phash(img_art, hash_size=hs) |
| | | #card_info['art_hash_%d' % hs] = art_hash |
| | | new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info |
| | |
| | | # Typical pre-processing - grayscale, blurring, thresholding |
| | | img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| | | img_blur = cv2.medianBlur(img_gray, 5) |
| | | img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c) |
| | | |
| | | img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c) |
| | | cv2.imshow('Thres', img_thresh) |
| | | # Dilute the image, then erode them to remove minor noises |
| | | kernel = np.ones(kernel_size, np.uint8) |
| | | img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) |
| | | img_erode = cv2.erode(img_dilate, kernel, iterations=1) |
| | | |
| | | cv2.imshow('Eroded', img_erode) |
| | | # Find the contour |
| | | cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | if len(cnts) == 0: |
| | | #print('no contours') |
| | | return [] |
| | | |
| | | img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR) |
| | | cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True) |
| | | cnts2 = cnts2[:10] |
| | | for i in range(0, len(cnts2)): |
| | | print(i, len(cnts2[i])) |
| | | cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3) |
| | | cv2.imshow('Contours', img_cont) |
| | | # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child |
| | | # their previous and next node |
| | | # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition |
| | |
| | | size = cv2.contourArea(cnt) |
| | | peri = cv2.arcLength(cnt, True) |
| | | approx = cv2.approxPolyDP(cnt, 0.04 * peri, True) |
| | | if size >= size_thresh and len(approx) == 4: |
| | | if size >= size_thresh and len(approx) < 6: |
| | | print('Size:', size) |
| | | cnts_rect.append(approx) |
| | | else: |
| | | if i_child != -1: |
| | |
| | | return img_graph |
| | | |
| | | |
| | | def detect_frame(img, card_pool, hash_size=32, size_thresh=10000, |
| | | def detect_frame(img, card_pool, hash_size=32, size_thresh=100000, |
| | | out_path=None, display=True, debug=False): |
| | | """ |
| | | Identify all cards in the input frame, display or save the frame if needed |
| | |
| | | card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash)) |
| | | ''' |
| | | img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') |
| | | img_card_size = img_warp.shape |
| | | print(img_card_size) |
| | | cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)] |
| | | print(cut) |
| | | img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]] |
| | | print(img_set_part.shape) |
| | | img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB') |
| | | cv2.imshow("Set Img#%d" % i, img_set_part) |
| | | |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size] |
| | | card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0] |
| | | hash_diff = min_card['hash_diff'] |
| | | |
| | | top_matches = sorted(card_pool['hash_diff']) |
| | | set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten() |
| | | cd_data = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | print(list(card_pool.columns.values)) |
| | | candidates = [] |
| | | for ix in range(0, 2): |
| | | cdr = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0] |
| | | cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cdr |
| | | cd = cdr |
| | | print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix]) |
| | | |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size] |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash)) |
| | | conf = sorted(cd_data['set_hash_diff']) |
| | | print('Confs:', conf) |
| | | best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0] |
| | | print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set']) |
| | | |
| | | min_card = best_match |
| | | card_name = min_card['name'] |
| | | card_set = min_card['set'] |
| | | det_cards.append((card_name, card_set)) |
| | | hash_diff = min_card['hash_diff'] |
| | | |
| | | # Render the result, and display them if needed |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2) |
| | |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes) |
| | | ch_key = 'card_hash_%d' % args.hash_size |
| | | set_key = 'set_hash_%d' % args.hash_size |
| | | if ch_key not in card_pool.columns: |
| | | # we did not generate this hash_size yet |
| | | print('We need to add hash_size=%d' % (args.hash_size,)) |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=[args.hash_size]) |
| | | |
| | | card_pool = card_pool[['name', 'set', 'collector_number', ch_key]] |
| | | card_pool = card_pool[['name', 'set', 'collector_number', ch_key, set_key]] |
| | | |
| | | # Processing time is almost linear to the size of the database |
| | | # Program can be much faster if the search scope for the card can be reduced |
| | |
| | | # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it |
| | | # significantly increases speed for subtracting hashes in the future. |
| | | card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten()) |
| | | card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten()) |
| | | |
| | | # If the test file isn't given, use webcam to capture video |
| | | if args.in_path is None: |