Added spatial Yolo v3 yolov3-spp.cfg
4 files modified
2 files added
| New file |
| | |
| | | [net] |
| | | # Testing |
| | | batch=1 |
| | | subdivisions=1 |
| | | # Training |
| | | # batch=64 |
| | | # subdivisions=16 |
| | | width=608 |
| | | height=608 |
| | | channels=3 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | angle=0 |
| | | saturation = 1.5 |
| | | exposure = 1.5 |
| | | hue=.1 |
| | | |
| | | learning_rate=0.001 |
| | | burn_in=1000 |
| | | max_batches = 500200 |
| | | policy=steps |
| | | steps=400000,450000 |
| | | scales=.1,.1 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=32 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=32 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | ###################### |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | ### SPP ### |
| | | [maxpool] |
| | | stride=1 |
| | | size=5 |
| | | |
| | | [route] |
| | | layers=-2 |
| | | |
| | | [maxpool] |
| | | stride=1 |
| | | size=9 |
| | | |
| | | [route] |
| | | layers=-4 |
| | | |
| | | [maxpool] |
| | | stride=1 |
| | | size=13 |
| | | |
| | | [route] |
| | | layers=-1,-3,-5,-6 |
| | | |
| | | ### End SPP ### |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 6,7,8 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| | | |
| | | [route] |
| | | layers = -4 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [upsample] |
| | | stride=2 |
| | | |
| | | [route] |
| | | layers = -1, 61 |
| | | |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 3,4,5 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| | | |
| | | |
| | | [route] |
| | | layers = -4 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [upsample] |
| | | stride=2 |
| | | |
| | | [route] |
| | | layers = -1, 36 |
| | | |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 0,1,2 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| New file |
| | |
| | | [net] |
| | | # Testing |
| | | batch=1 |
| | | subdivisions=1 |
| | | # Training |
| | | # batch=64 |
| | | # subdivisions=16 |
| | | width=608 |
| | | height=608 |
| | | channels=3 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | angle=0 |
| | | saturation = 1.5 |
| | | exposure = 1.5 |
| | | hue=.1 |
| | | |
| | | learning_rate=0.001 |
| | | burn_in=1000 |
| | | max_batches = 500200 |
| | | policy=steps |
| | | steps=400000,450000 |
| | | scales=.1,.1 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=32 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=32 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=64 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | # Downsample |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=2 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=1024 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [shortcut] |
| | | from=-3 |
| | | activation=linear |
| | | |
| | | ###################### |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | ### SPP ### |
| | | [maxpool] |
| | | stride=1 |
| | | size=5 |
| | | |
| | | [route] |
| | | layers=-2 |
| | | |
| | | [maxpool] |
| | | stride=1 |
| | | size=9 |
| | | |
| | | [route] |
| | | layers=-4 |
| | | |
| | | [maxpool] |
| | | stride=1 |
| | | size=13 |
| | | |
| | | [route] |
| | | layers=-1,-3,-5,-6 |
| | | |
| | | ### End SPP ### |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=512 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 6,7,8 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| | | |
| | | [route] |
| | | layers = -4 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [upsample] |
| | | stride=2 |
| | | |
| | | [route] |
| | | layers = -1, 61 |
| | | |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=256 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=512 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 3,4,5 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| | | |
| | | |
| | | [route] |
| | | layers = -4 |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [upsample] |
| | | stride=2 |
| | | |
| | | [route] |
| | | layers = -1, 36 |
| | | |
| | | |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | filters=128 |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | batch_normalize=1 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=256 |
| | | activation=leaky |
| | | |
| | | [convolutional] |
| | | size=1 |
| | | stride=1 |
| | | pad=1 |
| | | filters=255 |
| | | activation=linear |
| | | |
| | | |
| | | [yolo] |
| | | mask = 0,1,2 |
| | | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 |
| | | classes=80 |
| | | num=9 |
| | | jitter=.3 |
| | | ignore_thresh = .7 |
| | | truth_thresh = 1 |
| | | random=1 |
| | | |
| | |
| | | l.w = w; |
| | | l.c = c; |
| | | l.pad = padding; |
| | | l.out_w = (w + 2*padding)/stride; |
| | | l.out_h = (h + 2*padding)/stride; |
| | | l.out_w = (w + 2 * padding - size) / stride + 1; |
| | | l.out_h = (h + 2 * padding - size) / stride + 1; |
| | | l.out_c = c; |
| | | l.outputs = l.out_h * l.out_w * l.out_c; |
| | | l.inputs = h*w*c; |
| | |
| | | l->w = w; |
| | | l->inputs = h*w*l->c; |
| | | |
| | | l->out_w = (w + 2*l->pad)/l->stride; |
| | | l->out_h = (h + 2*l->pad)/l->stride; |
| | | l->out_w = (w + 2 * l->pad - l->size) / l->stride + 1; |
| | | l->out_h = (h + 2 * l->pad - l->size) / l->stride + 1; |
| | | l->outputs = l->out_w * l->out_h * l->c; |
| | | int output_size = l->outputs * l->batch; |
| | | |
| | |
| | | |
| | | __global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *input, float *output, int *indexes) |
| | | { |
| | | int h = (in_h + 2*pad)/stride; |
| | | int w = (in_w + 2*pad)/stride; |
| | | int h = (in_h + 2 * pad - size) / stride + 1; |
| | | int w = (in_w + 2 * pad - size) / stride + 1; |
| | | int c = in_c; |
| | | |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | |
| | | |
| | | __global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *delta, float *prev_delta, int *indexes) |
| | | { |
| | | int h = (in_h + 2*pad)/stride; |
| | | int w = (in_w + 2*pad)/stride; |
| | | int h = (in_h + 2 * pad - size) / stride + 1; |
| | | int w = (in_w + 2 * pad - size) / stride + 1; |
| | | int c = in_c; |
| | | int area = (size-1)/stride; |
| | | |