| | |
| | | from multiprocessing import Pool |
| | | from config import Config |
| | | import fetch_data |
| | | import pytesseract |
| | | |
| | | |
| | | """ |
| | |
| | | cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True) |
| | | cnts2 = cnts2[:10] |
| | | if True: |
| | | cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3) |
| | | cv2.rawContours(img_cc, cnts2, -1, (0, 255, 0), 3) |
| | | #cv2.imshow('Contours', card_img) |
| | | #cv2.waitKey(10000) |
| | | """ |
| | |
| | | return cnts_rect |
| | | |
| | | |
| | | def draw_card_graph(exist_cards, card_pool, f_len): |
| | | def draw_card_graph(exist_cards, card_pool, f_len, text_scale=0.8): |
| | | """ |
| | | Given the history of detected cards in the current and several previous frames, draw a simple graph |
| | | displaying the detected cards with its confidence level |
| | |
| | | gap_sm = 10 # Small offset |
| | | w_bar = 300 # Length of the confidence bar at 100% |
| | | h_bar = 12 |
| | | txt_scale = 0.8 |
| | | txt_scale = text_scale |
| | | n_cards_p_col = 4 # Number of cards displayed per one column |
| | | w_img = gap + (w_card + gap + w_bar + gap) * 2 # Dimension of the entire graph (for 2 columns) |
| | | h_img = 480 |
| | |
| | | |
| | | |
| | | def detect_frame(img, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, debug=False): |
| | | out_path=None, display=True, debug=False, scale=1.0, tesseract=False): |
| | | """ |
| | | Identify all cards in the input frame, display or save the frame if needed |
| | | :param img: input frame |
| | |
| | | ''' |
| | | img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') |
| | | img_card_size = img_warp.shape |
| | | |
| | | # cut out the part of the image that has the set icon |
| | | #print(img_card_size) |
| | | cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)] |
| | | #print(cut) |
| | |
| | | #print('img set') |
| | | if debug: |
| | | cv2.imshow("Set Img#%d" % i, img_set_part) |
| | | # tesseract takes a long time (200ms+), so if at all we should collect pictures |
| | | # and then if a card is detected successfully, add it to detected cards and run a background check with |
| | | # tesseract, if the identification with tesseract fails, mark somehow |
| | | # or only use tesseract in case of edition conflicts idk yet |
| | | # we will need to see what is needed |
| | | # also it is hard to detect with bad 500x600 px image |
| | | # maybe training it for the font would make it better or getting better resolution images |
| | | prefilter = True |
| | | if tesseract: |
| | | height, width, channels = img_warp.shape |
| | | blank_image = np.zeros((height, width, 3), np.uint8) |
| | | threshold = 70 |
| | | athreshold = -30 |
| | | athreshold = -cv2.getTrackbarPos("Threshold", "mainwindow") |
| | | cut = [round(img_card_size[0]*0.94),round(img_card_size[0]*0.98),round(img_card_size[1]*0.02),round(img_card_size[1]*0.3)] |
| | | blank_image = img_warp[cut[0]:cut[1], cut[2]:cut[3]] |
| | | cv2.imshow("Tesseract Image", blank_image) |
| | | if prefilter: |
| | | blank_image = cv2.cvtColor(blank_image, cv2.COLOR_BGR2GRAY) |
| | | blank_image = cv2.normalize(blank_image, None, 0, 255, cv2.NORM_MINMAX) |
| | | cv2.imshow("Normalized", blank_image) |
| | | result_image = cv2.adaptiveThreshold(blank_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 501, athreshold) |
| | | #_, result_image = cv2.threshold(blank_image, threshold, 255, cv2.THRESH_BINARY_INV) |
| | | cv2.imshow("TessImg", result_image) |
| | | tesseract_output = pytesseract.image_to_string(cv2.cvtColor(result_image, cv2.COLOR_GRAY2RGB)) |
| | | else: |
| | | tesseract_output = pytesseract.image_to_string(cv2.cvtColor(blank_image, cv2.COLOR_BGR2RGB)) |
| | | if "M20" in tesseract_output or 'm20' in tesseract_output: |
| | | tesseract_output = "M20" |
| | | print(tesseract_output) |
| | | else: |
| | | print(tesseract_output) |
| | | tesseract_output = "Set not detected" |
| | | |
| | | #cv2.imshow("Tesseract Image", img_warp) |
| | | #img_gray = cv2.cvtColor(img_warp, cv2.COLOR_BGR2GRAY) |
| | | #img_blur = cv2.medianBlur(img_gray, 5) |
| | | #img_thresh = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5) |
| | | #cv2.imshow('Thres', img_thresh) |
| | | #tesseract_output = pytesseract.image_to_string(cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2RGB)) |
| | | #if "M20" in tesseract_output or 'm20' in tesseract_output: |
| | | # tesseract_output = "M20" |
| | | # print(tesseract_output) |
| | | #else: |
| | | # print(tesseract_output) |
| | | # tesseract_output = "Set not detected" |
| | | |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten() |
| | |
| | | det_cards.append((card_name, card_set)) |
| | | |
| | | # Render the result, and display them if needed |
| | | image_header = card_name |
| | | if tesseract: |
| | | image_header += ' TS: ' + tesseract_output |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2) |
| | | cv2.putText(img_result, card_name, (int(min(pts[0][0], pts[1][0])), int(min(pts[0][1], pts[1][1]))), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | cv2.putText(img_result, image_header, (int(min(pts[0][0], pts[1][0])), int(min(pts[0][1], pts[1][1]))), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.5*scale+0.1, (255, 255, 255), 2) |
| | | if debug: |
| | | # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) |
| | | cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1) |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.4*scale+0.1, (255, 255, 255), 1) |
| | | cv2.imshow('card#%d' % i, img_warp) |
| | | if display: |
| | | cv2.imshow('Result', img_result) |
| | |
| | | cv2.imwrite(out_path, img_result.astype(np.uint8)) |
| | | return det_cards, img_result |
| | | |
| | | def trackbardummy(v): |
| | | pass |
| | | |
| | | def detect_video(capture, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0): |
| | | out_path=None, display=True, show_graph=True, debug=False, |
| | | crop_x=0, crop_y=0, rotate=None, flip=None, tesseract=False): |
| | | """ |
| | | Identify all cards in the continuous video stream, display or save the result if needed |
| | | :param capture: input video stream |
| | |
| | | :return: list of detected card's name/set and resulting image |
| | | :return: |
| | | """ |
| | | if tesseract: |
| | | cv2.namedWindow('mainwindow') |
| | | cv2.createTrackbar("Threshold", "mainwindow", 30, 255, trackbardummy) |
| | | list_names_from = 0 |
| | | # get some frame numers |
| | | f_width = 0 |
| | | f_height = 0 |
| | | f_scale = 1.0 |
| | | if rotate is not None and (rotate == 0 or rotate == 2): |
| | | f_height = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)-2*crop_y) |
| | | f_width = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)-2*crop_x) |
| | | else: |
| | | f_width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH) - 2*crop_x) |
| | | f_height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT) - 2*crop_y) |
| | | |
| | | if f_width > 800 or f_height > 800: |
| | | f_max = max(f_width, f_height) |
| | | f_scale = (800.0/float(f_max)) |
| | | |
| | | # Get the dimension of the output video, and set it up |
| | | if show_graph: |
| | | img_graph = draw_card_graph({}, pd.DataFrame(), -1) # Black image of the graph just to get the dimension |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0]) |
| | | width = int(f_width * f_scale) + img_graph.shape[1] |
| | | height = max(int(f_height * f_scale), img_graph.shape[0]) |
| | | height += 200 # some space to display last detected cards |
| | | else: |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) |
| | | height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
| | | width = int(f_width * f_scale) |
| | | height = int(f_height * f_scale) |
| | | if out_path is not None: |
| | | vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height)) |
| | | max_num_obj = 0 |
| | | f_len = 10 # number of frames to consider to check for existing cards |
| | | exist_cards = {} |
| | | |
| | | #print(f"fw{f_width} fh{f_height} w{width} h{height} fs{f_scale}") |
| | | exist_card_single = {} |
| | | written_out_cards = set() |
| | | found_cards = [] |
| | |
| | | ret, frame = capture.read() |
| | | if not ret: |
| | | continue |
| | | |
| | | if flip is not None: |
| | | frame = cv2.flip(frame, flip) |
| | | if rotate is not None: |
| | | frame = cv2.rotate(frame, rotate) |
| | | |
| | | y_max_index = -crop_y |
| | | if crop_y == 0: |
| | | y_max_index = frame.shape[0] |
| | |
| | | x_max_index = frame.shape[1] |
| | | |
| | | croped_img = frame[crop_y:y_max_index, crop_x:x_max_index] |
| | | fimg = cv2.flip(croped_img, -1) |
| | | fimg = croped_img |
| | | start_time = time.time() |
| | | if not ret: |
| | | # End of video |
| | |
| | | break |
| | | # Detect all cards from the current frame |
| | | det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh, |
| | | out_path=None, display=False, debug=debug) |
| | | out_path=None, display=False, debug=debug, scale=1.0/f_scale, tesseract=tesseract) |
| | | if show_graph: |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | |
| | | # Draw the graph based on the history of detected cards, then concatenate it with the result image |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | # resize result to out predefined area |
| | | if f_scale != 1.0: |
| | | img_result = cv2.resize(img_result, (min(800, int(img_result.shape[1]*f_scale)), min(800, int(img_result.shape[0] * f_scale))), interpolation=cv2.INTER_LINEAR) |
| | | #print(f'ri_w{img_result.shape[1]} ri_h{img_result.shape[0]}') |
| | | #print(f"gi_w{img_graph.shape[1]} gi_h{img_graph.shape[0]}") |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | start_at = max(0,list_names_from-10) |
| | |
| | | print("Using webcam") |
| | | capture = cv2.VideoCapture(0) |
| | | capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG")) |
| | | capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) |
| | | capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) |
| | | capture.set(cv2.CAP_PROP_FRAME_WIDTH, args.rx) |
| | | capture.set(cv2.CAP_PROP_FRAME_HEIGHT, args.ry) |
| | | else: |
| | | print(f"Using streami {args.stream_url}") |
| | | print(f"Using stream {args.stream_url}") |
| | | capture = cv2.VideoCapture(args.stream_url) |
| | | |
| | | thres = int((1920-2*args.crop_x)*(1080-2*args.crop_y)*(float(args.threshold_percent)/100)) |
| | | thres = int((args.rx-2*args.crop_x)*(args.ry-2*args.crop_y)*(float(args.threshold_percent)/100)) |
| | | print('Threshold:', thres) |
| | | if args.out_path is None: |
| | | out_path = None |
| | | else: |
| | | out_path = '%s/result.avi' % args.out_path |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=args.crop_x, crop_y=args.crop_y, size_thresh=thres) |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug, |
| | | crop_x=args.crop_x, crop_y=args.crop_y, size_thresh=thres, |
| | | rotate=args.rotate, flip=args.flip, tesseract=args.tesseract) |
| | | capture.release() |
| | | else: |
| | | print(f"Using image or video {args.in_path}") |
| | |
| | | # Test file is a video |
| | | capture = cv2.VideoCapture(args.in_path) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display, |
| | | show_graph=args.show_graph, debug=args.debug) |
| | | show_graph=args.show_graph, debug=args.debug, |
| | | rotate=args.rotate, flip=args.flip, tesseract=args.tesseract) |
| | | |
| | | capture.release() |
| | | pass |
| | | |
| | |
| | | parser.add_argument('-cx', '--crop-x', dest='crop_x', help='crop x amount of pixel on each side in x-axis', type=int, default=0) |
| | | parser.add_argument('-cy', '--crop-y', dest='crop_y', help='crop x amount of pixel on each side in y-axis', type=int, default=0) |
| | | parser.add_argument('-tp', '--threshold-percent', dest='threshold_percent', help='percentage amount that the card image needs to take up to be detected',type=int, default=5) |
| | | parser.add_argument('-r', '--rotate', dest='rotate', help='Rotate image before usage 0 90_CLOCK, 1 180, 2 90 COUNTER_CLOCK', type=int, default=None) |
| | | parser.add_argument('-f', '--flip', dest='flip', help='flip image before using, this is done before rotation -1(both axis), 0(x-axis), 1(y-axis)', type=int, default=None) |
| | | parser.add_argument('-rx', '--resolution-x', dest='rx', help='X-Resolution of the source, defaults to 1920', type=int, default=1920) |
| | | parser.add_argument('-ry', '--resulution-y', dest='ry', help="Y-Resolution of the source, defaults to 1080", type=int, default=1080) |
| | | parser.add_argument('-t', '--tesseract', dest='tesseract', help='enable tesseract edition detection (not used only displayed)', action='store_true', default=False) |
| | | args = parser.parse_args() |
| | | if not args.display and args.out_path is None: |
| | | # Then why the heck are you running this thing in the first place? |