Joseph Redmon
2014-02-24 bc902b277e9131cc169751056786de5393da737d
Imagenet Features\!
6 files modified
189 ■■■■ changed files
src/data.c 1 ●●●● patch | view | raw | blame | history
src/image.c 23 ●●●● patch | view | raw | blame | history
src/image.h 1 ●●●● patch | view | raw | blame | history
src/network.c 55 ●●●● patch | view | raw | blame | history
src/softmax_layer.c 4 ●●●● patch | view | raw | blame | history
src/tests.c 105 ●●●● patch | view | raw | blame | history
src/data.c
@@ -10,6 +10,7 @@
{
    char *path;
    FILE *file = fopen(filename, "r");
    if(!file) file_error(filename);
    list *lines = make_list();
    while((path=fgetl(file))){
        list_insert(lines, path);
src/image.c
@@ -4,6 +4,21 @@
int windows = 0;
image image_distance(image a, image b)
{
    int i,j;
    image dist = make_image(a.h, a.w, 1);
    for(i = 0; i < a.c; ++i){
        for(j = 0; j < a.h*a.w; ++j){
            dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2);
        }
    }
    for(j = 0; j < a.h*a.w; ++j){
        dist.data[j] = sqrt(dist.data[j]);
    }
    return dist;
}
void subtract_image(image a, image b)
{
    int i;
@@ -370,9 +385,11 @@
        printf("Cannot load file image %s\n", filename);
        exit(0);
    }
    IplImage *resized = resizeImage(src, h, w, 1);
    cvReleaseImage(&src);
    src = resized;
    if(h && w ){
        IplImage *resized = resizeImage(src, h, w, 1);
        cvReleaseImage(&src);
        src = resized;
    }
    image out = ipl_to_image(src);
    cvReleaseImage(&src);
    return out;
src/image.h
@@ -10,6 +10,7 @@
    float *data;
} image;
image image_distance(image a, image b);
void scale_image(image m, float s);
void add_scalar_image(image m, float s);
void normalize_image(image p);
src/network.c
@@ -21,18 +21,18 @@
    return net;
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
{
    int i;
    fprintf(fp, "[convolutional]\n"
                "height=%d\n"
                "width=%d\n"
                "channels=%d\n"
                "filters=%d\n"
    fprintf(fp, "[convolutional]\n");
    if(first) fprintf(fp,   "height=%d\n"
                            "width=%d\n"
                            "channels=%d\n",
                            l->h, l->w, l->c);
    fprintf(fp, "filters=%d\n"
                "size=%d\n"
                "stride=%d\n"
                "activation=%s\n",
                l->h, l->w, l->c,
                l->n, l->size, l->stride,
                get_activation_string(l->activation));
    fprintf(fp, "data=");
@@ -40,14 +40,14 @@
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_connected_cfg(FILE *fp, connected_layer *l)
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
{
    int i;
    fprintf(fp, "[connected]\n"
                "input=%d\n"
                "output=%d\n"
    fprintf(fp, "[connected]\n");
    if(first) fprintf(fp, "input=%d\n", l->inputs);
    fprintf(fp, "output=%d\n"
                "activation=%s\n",
                l->inputs, l->outputs,
                l->outputs,
                get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
@@ -55,22 +55,21 @@
    fprintf(fp, "\n\n");
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l)
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
{
    fprintf(fp, "[maxpool]\n"
                "height=%d\n"
                "width=%d\n"
                "channels=%d\n"
                "stride=%d\n\n",
                l->h, l->w, l->c,
                l->stride);
    fprintf(fp, "[maxpool]\n");
    if(first) fprintf(fp,   "height=%d\n"
                            "width=%d\n"
                            "channels=%d\n",
                            l->h, l->w, l->c);
    fprintf(fp, "stride=%d\n\n", l->stride);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l)
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
{
    fprintf(fp, "[softmax]\n"
                "input=%d\n\n",
                l->inputs);
    fprintf(fp, "[softmax]\n");
    if(first) fprintf(fp, "input=%d\n", l->inputs);
    fprintf(fp, "\n");
}
void save_network(network net, char *filename)
@@ -81,13 +80,13 @@
    for(i = 0; i < net.n; ++i)
    {
        if(net.types[i] == CONVOLUTIONAL)
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]);
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
        else if(net.types[i] == CONNECTED)
            print_connected_cfg(fp, (connected_layer *)net.layers[i]);
            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]);
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i]);
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
    }
    fclose(fp);
}
src/softmax_layer.c
@@ -36,9 +36,9 @@
    }
    for(i = 0; i < layer.inputs; ++i){
        sum += exp(input[i]-largest);
        printf("%f, ", input[i]);
        //printf("%f, ", input[i]);
    }
    printf("\n");
    //printf("\n");
    if(sum) sum = largest+log(sum);
    else sum = largest-100;
    for(i = 0; i < layer.inputs; ++i){
src/tests.c
@@ -188,37 +188,64 @@
    free_data(train);
}
void test_full()
void train_full()
{
    network net = parse_network_cfg("full.cfg");
    network net = parse_network_cfg("cfg/imagenet.cfg");
    srand(2222222);
    int i = 800;
    int i = 0;
    char *labels[] = {"cat","dog"};
    float lr = .00001;
    float momentum = .9;
    float decay = 0.01;
    while(i++ < 1000 || 1){
        visualize_network(net);
        cvWaitKey(100);
        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
    while(1){
        i += 1000;
        data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
        image im = float_to_image(256, 256, 3,train.X.vals[0]);
        show_image(im, "input");
        cvWaitKey(100);
        //visualize_network(net);
        //cvWaitKey(100);
        //show_image(im, "input");
        //cvWaitKey(100);
        //scale_data_rows(train, 1./255.);
        normalize_data_rows(train);
        clock_t start = clock(), end;
        float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
        end = clock();
        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
        free_data(train);
        if(i%100==0){
        if(i%10000==0){
            char buff[256];
            sprintf(buff, "backup_%d.cfg", i);
            //save_network(net, buff);
            sprintf(buff, "cfg/assira_backup_%d.cfg", i);
            save_network(net, buff);
        }
        //lr *= .99;
    }
}
void test_full()
{
    network net = parse_network_cfg("cfg/backup_1300.cfg");
    srand(2222222);
    int i,j;
    int total = 100;
    char *labels[] = {"cat","dog"};
    FILE *fp = fopen("preds.txt","w");
    for(i = 0; i < total; ++i){
        visualize_network(net);
        cvWaitKey(100);
        data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
        image im = float_to_image(256, 256, 3,test.X.vals[0]);
        show_image(im, "input");
        cvWaitKey(100);
        normalize_data_rows(test);
        for(j = 0; j < test.X.rows; ++j){
            float *x = test.X.vals[j];
            forward_network(net, x);
            int class = get_predicted_class_network(net);
            fprintf(fp, "%d\n", class);
        }
        free_data(test);
    }
    fclose(fp);
}
void test_nist()
{
@@ -400,6 +427,7 @@
{
    x = x-1+3;
    x = x-1+3;
    x = x-1+3;
    x = (x-1)*2+1;
    x = x-1+5;
    x = (x-1)*2+1;
@@ -411,13 +439,14 @@
{
    int h = voc_size(outh);
    int w = voc_size(outw);
    printf("%d %d\n", h, w);
    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
    cvResize(src, sized, CV_INTER_LINEAR);
    image im = ipl_to_image(sized);
    reset_network_size(net, im.h, im.w, im.c);
    forward_network(net, im.data);
    image out = get_network_image_layer(net, 5);
    image out = get_network_image_layer(net, 6);
    //printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
    free_image(im);
    cvReleaseImage(&sized);
@@ -500,7 +529,7 @@
void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
{
    int i,j;
    network net = parse_network_cfg("cfg/voc_features.cfg");
    network net = parse_network_cfg("cfg/imagenet.cfg");
    char image_path[1024];
    sprintf(image_path, "%s%s",image_dir, image_file);
    char out_path[1024];
@@ -557,8 +586,54 @@
    cvReleaseImage(&src);
}
void test_distribution()
{
    IplImage* img = 0;
    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
    network net = parse_network_cfg("cfg/voc_features.cfg");
    int h = img->height/8-2;
    int w = img->width/8-2;
    image out = features_output_size(net, img, h, w);
    int c = out.c;
    out.c = 1;
    show_image(out, "output");
    out.c = c;
    image input = ipl_to_image(img);
    show_image(input, "input");
    CvScalar s;
    int i,j;
    image affects = make_image(input.h, input.w, 1);
    int count = 0;
    for(i = 0; i<img->height; i += 1){
        for(j = 0; j < img->width; j += 1){
            IplImage *copy = cvCloneImage(img);
            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
            printf("%d/%d\n", count++, img->height*img->width);
            s.val[0]=0;
            s.val[1]=0;
            s.val[2]=0;
            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
            image mod = features_output_size(net, copy, h, w);
            image dist = image_distance(out, mod);
            show_image(affects, "affects");
            cvWaitKey(1);
            cvReleaseImage(&copy);
            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
            free_image(mod);
            free_image(dist);
        }
    }
    show_image(affects, "Origins");
    cvWaitKey(0);
    cvWaitKey(0);
}
int main(int argc, char *argv[])
{
    //train_full();
    //test_distribution();
    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
    //test_blas();