Hacks to get nightmare to not break gridsizing
| | |
| | | #include <stdio.h> |
| | | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | |
| | | |
| | | char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"}; |
| | | |
| | | int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void draw_coco(image im, float *box, int side, int objectness, char *label) |
| | | { |
| | | int classes = 80; |
| | |
| | | } |
| | | } |
| | | |
| | | void print_cocos(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < num_boxes*num_boxes; ++i){ |
| | |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | float bx = xmin; |
| | | float by = ymin; |
| | | float bw = xmax - xmin; |
| | | float bh = ymax - ymin; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], |
| | | xmin, ymin, xmax, ymax); |
| | | if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); |
| | | } |
| | | } |
| | | } |
| | | |
| | | int get_coco_image_id(char *filename) |
| | | { |
| | | char *p = strrchr(filename, '_'); |
| | | return atoi(p+1); |
| | | } |
| | | |
| | | void validate_coco(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("data/voc.2012test.list"); |
| | | char *base = "/home/pjreddie/backup/"; |
| | | list *plist = get_paths("data/coco_val_5k.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | snprintf(buff, 1024, "%s/coco_results.json", base); |
| | | FILE *fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | |
| | | box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | |
| | | int i=0; |
| | | int t; |
| | | |
| | | float thresh = .001; |
| | | float thresh = .01; |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | |
| | | } |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | char *path = paths[i+t-nthreads]; |
| | | char *id = basecfg(path); |
| | | int image_id = get_coco_image_id(path); |
| | | float *X = val_resized[t].data; |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh); |
| | | print_cocos(fps, id, boxes, probs, num_boxes, classes, w, h); |
| | | free(id); |
| | | print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | fseek(fp, -2, SEEK_CUR); |
| | | fprintf(fp, "\n]\n"); |
| | | fclose(fp); |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | |
| | | #include "image.h" |
| | | } |
| | | |
| | | #define BLOCK 256 |
| | | |
| | | __device__ float get_pixel_kernel(float *image, int w, int h, int x, int y, int c) |
| | | { |
| | | if(x < 0 || x >= w || y < 0 || y >= h) return 0; |
| | |
| | | |
| | | #ifdef GPU |
| | | |
| | | #define BLOCK 256 |
| | | #define BLOCK 512 |
| | | |
| | | #include "cuda_runtime.h" |
| | | #include "curand.h" |
| | |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | clock_t time; |
| | | while(i*imgs < N*120){ |
| | | while(i*imgs < N*130){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if((i-1)*imgs <= N && i*imgs > N){ |
| | | fprintf(stderr, "Starting second stage...\n"); |
| | | fprintf(stderr, "First stage done\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); |
| | |
| | | save_weights(net, buff); |
| | | return; |
| | | } |
| | | if((i-1)*imgs <= 120*N && i*imgs > N*120){ |
| | | fprintf(stderr, "Third stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_third_stage.weights", backup_directory, base); |
| | | net.layers[net.n-1].rescore = 1; |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("data/voc.2012test.list"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | |
| | | #include "blas.h" |
| | | } |
| | | |
| | | #define BLOCK 256 |
| | | |
| | | __global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float *output) |
| | | { |
| | | int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |