Optimized on CPU: gemm_bin, im2col, activation, transpose
| | |
| | | void activate_array(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | x[i] = activate(x[i], a); |
| | | if (a == LINEAR) {} |
| | | else if (a == LEAKY) { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = leaky_activate(x[i]); |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | for(i = 0; i < n; ++i){ |
| | | delta[i] *= gradient(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void binary_transpose_align_weights(convolutional_layer *l, size_t ldb_align) |
| | | void binary_align_weights(convolutional_layer *l, size_t lda_align) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_weights_size = new_lda * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = l->binary_weights[i*k + j]; |
| | | align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
| | |
| | | } |
| | | |
| | | |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | //char * |
| | | *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | /* |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | }*/ |
| | | //transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size) |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, 16); |
| | | |
| | | int blocksize = 1; |
| | | int mod_k = 1, mod_n = 1; |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (k % i == 0) mod_k = i; |
| | | |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (n % i == 0) mod_n = i; |
| | | |
| | | blocksize = (mod_k < mod_n) ? mod_k : mod_n; |
| | | |
| | | transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize); |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, blocksize); |
| | | //printf("\n blocksize = %d \n", blocksize); |
| | | |
| | | float_to_bit(t_input, *t_bit_input, t_intput_size); |
| | | free(t_input); |
| | | |
| | | return t_intput_size; |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | |
| | | u++; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | |
| | | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | /* |
| | | size_t ldb_align = 256;// 8; |
| | | if (k > 4096)ldb_align = 4096; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | |
| | | } |
| | | float_to_bit(t_input, t_bit_input, t_intput_size); |
| | | |
| | | |
| | | |
| | | if (!l.align_bit_weights) |
| | | { |
| | | size_t align_weights_size = new_ldb * m; |
| | |
| | | |
| | | free(align_weights); |
| | | } |
| | | */ |
| | | size_t ldb_align = 256; // 256 bit for AVX2 |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | free(t_input); |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | |
| | | //free(align_bit_weights); |
| | |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | activate_array(l.output, m*n*l.batch, l.activation); |
| | | //activate_array(l.output, m*n*l.batch, l.activation); |
| | | activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); |
| | | |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | |
| | | void swap_binary(convolutional_layer *l); |
| | | void binarize_weights2(float *weights, int n, int size, char *binary, float *scales); |
| | | |
| | | void binary_transpose_align_weights(convolutional_layer *l, size_t ldb_align); |
| | | void binary_align_weights(convolutional_layer *l, size_t ldb_align); |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state); |
| | | |
| | |
| | | #include "gemm.h"
|
| | | #include "utils.h"
|
| | | #include "im2col.h"
|
| | | #include "cuda.h"
|
| | | #include <stdlib.h>
|
| | | #include <stdio.h>
|
| | |
| | |
|
| | | // http://graphics.stanford.edu/~seander/bithacks.html
|
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
|
| | |
|
| | | // https://arxiv.org/pdf/1611.07612.pdf
|
| | |
|
| | | static inline int popcnt128(__m128i n) {
|
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n);
|
| | |
| | | return _mm256_sad_epu8(total, _mm256_setzero_si256());
|
| | | }
|
| | | static inline int popcnt256_custom(__m256i n) {
|
| | | return _mm_popcnt_u64(n.m256i_i64[0]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[1]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[2]) +
|
| | | _mm_popcnt_u64(n.m256i_i64[3]);
|
| | | __m256i val = count256(n);
|
| | |
|
| | | return val.m256i_i64[0] +
|
| | | val.m256i_i64[1] +
|
| | | val.m256i_i64[2] +
|
| | | val.m256i_i64[3];
|
| | | }
|
| | |
|
| | | static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c)
|
| | | {
|
| | | __m256i u = _mm256_xor_si256(a, b);
|
| | | *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
|
| | | *l = _mm256_xor_si256(u, c);
|
| | | }
|
| | |
|
| | | static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) {
|
| | | __m256i all_1 = _mm256_set1_epi8(255);
|
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
|
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1);
|
| | |
|
| | | return c_bit256;
|
| | |
|
| | | }
|
| | |
|
| | | // 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
|
| | | // step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit)
|
| | | static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) {
|
| | | __m256i total = _mm256_setzero_si256();
|
| | | __m256i ones = _mm256_setzero_si256();
|
| | | __m256i twos = _mm256_setzero_si256();
|
| | | __m256i fours = _mm256_setzero_si256();
|
| | | __m256i eights = _mm256_setzero_si256();
|
| | | __m256i sixteens = _mm256_setzero_si256();
|
| | | __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
|
| | |
|
| | | for (uint64_t i = 0; i < size; i += 16) {
|
| | | //CSA(&twosA, &ones, ones, d[i], d[i + 1]);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3]));
|
| | | CSA(&foursA, &twos, twos, twosA, twosB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7]));
|
| | | CSA(&foursB, &twos, twos, twosA, twosB);
|
| | | CSA(&eightsA, &fours, fours, foursA, foursB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11]));
|
| | | CSA(&foursA, &twos, twos, twosA, twosB);
|
| | | CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13]));
|
| | | CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15]));
|
| | | CSA(&foursB, &twos, twos, twosA, twosB);
|
| | | CSA(&eightsB, &fours, fours, foursA, foursB);
|
| | | CSA(&sixteens, &eights, eights, eightsA, eightsB);
|
| | |
|
| | | total = _mm256_add_epi64(total, count256(sixteens));
|
| | | }
|
| | | total = _mm256_slli_epi64(total, 4);
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(eights), 3));
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(fours), 2));
|
| | | total = _mm256_add_epi64(total,
|
| | | _mm256_slli_epi64(count256(twos), 1));
|
| | | total = _mm256_add_epi64(total, count256(ones));
|
| | |
|
| | | return total.m256i_i64[0] +
|
| | | total.m256i_i64[1] +
|
| | | total.m256i_i64[2] +
|
| | | total.m256i_i64[3];
|
| | |
|
| | | //return _mm256_extract_epi64(total, 0)
|
| | | // + _mm256_extract_epi64(total, 1)
|
| | | // + _mm256_extract_epi64(total, 2)
|
| | | // + _mm256_extract_epi64(total, 3);
|
| | | }
|
| | |
|
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
| | | unsigned char *A, int lda,
|
| | | unsigned char *B, int ldb,
|
| | | float *C, int ldc, float *mean_arr)
|
| | | {
|
| | | __m256i all_1 = _mm256_set1_epi8(255);
|
| | | int i, j, k;
|
| | | int i;
|
| | |
|
| | | //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8);
|
| | | //if (K > 4096) printf("!!!avx_hs!!! \n\n");
|
| | | static int max_num_threads = 0;
|
| | | if (max_num_threads == 0) {
|
| | | max_num_threads = omp_get_max_threads();
|
| | | omp_set_num_threads(max_num_threads / 2);
|
| | | }
|
| | |
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
| | | for (i = 0; i < M; ++i)
|
| | | { // l.n - filters [16 - 55 - 1024]
|
| | | float mean_val = mean_arr[i];
|
| | | int j, k;
|
| | | __m256i all_1 = _mm256_set1_epi8(255);
|
| | |
|
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
| | | int count = 0;
|
| | | const int bit_step = 256;
|
| | | __m256i count_sum = _mm256_set1_epi8(0);
|
| | |
|
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
|
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
|
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); // xnor = not(xor(a,b))
|
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); // can be optimized - we can do other NOT for wegihts once and do not do this NOT
|
| | |
|
| | | int hs_count = 0;
|
| | | if (K > 4096) {
|
| | | hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256);
|
| | | count_sum = _mm256_add_epi64(count256(c_bit256), count_sum); // MulaÂ’s algorithm
|
| | |
|
| | | int local_bit_step = 4096;
|
| | | //count += popcnt256(c_bit256);
|
| | |
|
| | | int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step));
|
| | | hs_count = hs_count - f1; // remove extra bits
|
| | | count = hs_count;
|
| | | //binary_int64_printf(c_bit64);
|
| | | //printf(", count = %d \n\n", tmp_count);
|
| | | }
|
| | | else {
|
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
| | |
|
| | | //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
|
| | | //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
|
| | | //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
|
| | | //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
|
| | | //int tmp_count = popcnt128(c_bit128);
|
| | | // count of 1 bits
|
| | | count = count_sum.m256i_i64[0] +
|
| | | count_sum.m256i_i64[1] +
|
| | | count_sum.m256i_i64[2] +
|
| | | count_sum.m256i_i64[3];
|
| | |
|
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
|
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
|
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
|
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
|
| | | int tmp_count = popcnt256(c_bit256);
|
| | | //int tmp_count = popcnt256_custom(c_bit256);
|
| | | count += tmp_count;
|
| | |
|
| | | //binary_int64_printf(c_bit64);
|
| | | //printf(", count = %d \n\n", tmp_count);
|
| | | }
|
| | |
|
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
| | | count = count - f1; // remove extra bits
|
| | | }
|
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
| | | count = count - f1; // remove extra bits (from empty space for align only)
|
| | |
|
| | | C[i*ldc + j] = (2 * count - K) * mean_val;
|
| | | }
|
| | |
| | | }
|
| | |
|
| | |
|
| | | static inline float im2col_get_pixel(float *im, int height, int width, int channels,
|
| | | int row, int col, int channel, int pad)
|
| | | {
|
| | | row -= pad;
|
| | | col -= pad;
|
| | |
|
| | | if (row < 0 || col < 0 ||
|
| | | row >= height || col >= width) return 0;
|
| | | return im[col + width*(row + height*channel)];
|
| | | }
|
| | |
|
| | | //From Berkeley Vision's Caffe!
|
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE
|
| | | void im2col_cpu_custom(float* data_im,
|
| | | int channels, int height, int width,
|
| | | int ksize, int stride, int pad, float* data_col)
|
| | | {
|
| | |
|
| | | int c, h, w;
|
| | | int height_col = (height + 2 * pad - ksize) / stride + 1;
|
| | | int width_col = (width + 2 * pad - ksize) / stride + 1;
|
| | | int channels_col = channels * ksize * ksize;
|
| | |
|
| | | // optimized version
|
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1)
|
| | | {
|
| | | #pragma omp parallel for
|
| | | for (c = 0; c < channels_col; ++c) {
|
| | | int w_offset = c % ksize;
|
| | | int h_offset = (c / ksize) % ksize;
|
| | | int c_im = c / ksize / ksize;
|
| | | for (h = pad; h < height_col-pad; ++h) {
|
| | | for (w = pad; w < width_col-pad-8; w += 8) {
|
| | | int im_row = h_offset + h - pad;
|
| | | int im_col = w_offset + w - pad;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | |
|
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
|
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
|
| | | _mm256_storeu_ps(&data_col[col_index], src256);
|
| | | }
|
| | |
|
| | | for (; w < width_col - pad; ++w) {
|
| | | int im_row = h_offset + h - pad;
|
| | | int im_col = w_offset + w - pad;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | |
|
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | w = 0;
|
| | | for (h = 0; h < height_col; ++h) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | w = width_col-1;
|
| | | for (h = 0; h < height_col; ++h) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | h = 0;
|
| | | for (w = 0; w < width_col; ++w) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | h = height_col-1;
|
| | | for (w = 0; w < width_col; ++w) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | }
|
| | | else {
|
| | | //printf("\n Error: is no non-optimized version \n");
|
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
|
| | | }
|
| | | }
|
| | |
|
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
|
| | | {
|
| | | int i;
|
| | | if (a == LINEAR)
|
| | | {}
|
| | | else if (a == LEAKY)
|
| | | {
|
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
|
| | | __m256 all256_01 = _mm256_set1_ps(0.1F);
|
| | |
|
| | | for (i = 0; i < n; i += 8) {
|
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i];
|
| | |
|
| | | __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i]));
|
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
|
| | |
|
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
|
| | |
|
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
|
| | | _mm256_storeu_ps((__m256 *)(&x[i]), result256);
|
| | | }
|
| | |
|
| | | for (; i < n; ++i) {
|
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i];
|
| | | }
|
| | | }
|
| | | else {
|
| | | for (i = 0; i < n; ++i) {
|
| | | x[i] = activate(x[i], a);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void float_to_bit(float *src, unsigned char *dst, size_t size)
|
| | | {
|
| | | size_t dst_size = size / 8 + 1;
|
| | |
| | | }
|
| | | }
|
| | |
|
| | | static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb)
|
| | | {
|
| | | __m128 row1 = _mm_load_ps(&A[0 * lda]);
|
| | | __m128 row2 = _mm_load_ps(&A[1 * lda]);
|
| | | __m128 row3 = _mm_load_ps(&A[2 * lda]);
|
| | | __m128 row4 = _mm_load_ps(&A[3 * lda]);
|
| | | _MM_TRANSPOSE4_PS(row1, row2, row3, row4);
|
| | | _mm_store_ps(&B[0 * ldb], row1);
|
| | | _mm_store_ps(&B[1 * ldb], row2);
|
| | | _mm_store_ps(&B[2 * ldb], row3);
|
| | | _mm_store_ps(&B[3 * ldb], row4);
|
| | | }
|
| | |
|
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
|
| | | const int lda, const int ldb, const int block_size)
|
| | | {
|
| | | int i;
|
| | | if (block_size % 4 == 0) {
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < n; i += block_size) {
|
| | | int j, i2, j2;
|
| | | for (j = 0; j < m; j += block_size) {
|
| | | int max_i2 = i + block_size < n ? i + block_size : n;
|
| | | int max_j2 = j + block_size < m ? j + block_size : m;
|
| | | for (i2 = i; i2 < max_i2; i2 += 4) {
|
| | | for (j2 = j; j2 < max_j2; j2 += 4) {
|
| | | transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb);
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | else {
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < n; i += block_size) {
|
| | | int j, i2, j2;
|
| | | for (j = 0; j < m; j += block_size) {
|
| | | int max_i2 = i + block_size < n ? i + block_size : n;
|
| | | int max_j2 = j + block_size < m ? j + block_size : m;
|
| | | for (i2 = i; i2 < max_i2; ++i2) {
|
| | | for (j2 = j; j2 < max_j2; ++j2) {
|
| | | B[j2*ldb + i2] = A[i2*lda + j2];
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | #else
|
| | |
|
| | | void gemm_nn(int M, int N, int K, float ALPHA,
|
| | |
| | | }
|
| | | }
|
| | |
|
| | | //From Berkeley Vision's Caffe!
|
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE
|
| | | void im2col_cpu_custom(float* data_im,
|
| | | int channels, int height, int width,
|
| | | int ksize, int stride, int pad, float* data_col)
|
| | | {
|
| | |
|
| | | int c, h, w;
|
| | | int height_col = (height + 2 * pad - ksize) / stride + 1;
|
| | | int width_col = (width + 2 * pad - ksize) / stride + 1;
|
| | | int channels_col = channels * ksize * ksize;
|
| | |
|
| | | // optimized version
|
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1)
|
| | | {
|
| | | #pragma omp parallel for
|
| | | for (c = 0; c < channels_col; ++c) {
|
| | | int w_offset = c % ksize;
|
| | | int h_offset = (c / ksize) % ksize;
|
| | | int c_im = c / ksize / ksize;
|
| | | for (h = pad; h < height_col - pad; ++h) {
|
| | | for (w = pad; w < width_col - pad; ++w) {
|
| | | int im_row = h_offset + h - pad;
|
| | | int im_col = w_offset + w - pad;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | |
|
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
|
| | | }
|
| | |
|
| | | for (; w < width_col - pad; ++w) {
|
| | | int im_row = h_offset + h - pad;
|
| | | int im_col = w_offset + w - pad;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | |
|
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | w = 0;
|
| | | for (h = 0; h < height_col; ++h) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | w = width_col - 1;
|
| | | for (h = 0; h < height_col; ++h) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | h = 0;
|
| | | for (w = 0; w < width_col; ++w) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | |
|
| | | {
|
| | | h = height_col - 1;
|
| | | for (w = 0; w < width_col; ++w) {
|
| | | int im_row = h_offset + h;
|
| | | int im_col = w_offset + w;
|
| | | int col_index = (c * height_col + h) * width_col + w;
|
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
|
| | | im_row, im_col, c_im, pad);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | }
|
| | | else {
|
| | | //printf("\n Error: is no non-optimized version \n");
|
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
|
| | | }
|
| | | }
|
| | |
|
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
|
| | | {
|
| | | int i;
|
| | | if (a == LINEAR)
|
| | | {
|
| | | }
|
| | | else if (a == LEAKY)
|
| | | {
|
| | | for (i = 0; i < n; ++i) {
|
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i];
|
| | | }
|
| | | }
|
| | | else {
|
| | | for (i = 0; i < n; ++i) {
|
| | | x[i] = activate(x[i], a);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void float_to_bit(float *src, unsigned char *dst, size_t size)
|
| | | {
|
| | | size_t dst_size = size / 8 + 1;
|
| | |
| | | }
|
| | | free(byte_arr);
|
| | | }
|
| | |
|
| | | static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size)
|
| | | {
|
| | | int i, j;
|
| | | //#pragma omp parallel for
|
| | | for (i = 0; i<block_size; i++) {
|
| | | for (j = 0; j<block_size; j++) {
|
| | | B[j*ldb + i] = A[i*lda + j];
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m,
|
| | | const int lda, const int ldb, const int block_size)
|
| | | {
|
| | | int i;
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < n; i += block_size) {
|
| | | int j, i2, j2;
|
| | | for (j = 0; j < m; j += block_size) {
|
| | | int max_i2 = i + block_size < n ? i + block_size : n;
|
| | | int max_j2 = j + block_size < m ? j + block_size : m;
|
| | | for (i2 = i; i2 < max_i2; ++i2) {
|
| | | for (j2 = j; j2 < max_j2; ++j2) {
|
| | | B[j2*ldb + i2] = A[i2*lda + j2];
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | #endif // __x86_64
|
| | |
|
| | | void gemm_nt(int M, int N, int K, float ALPHA,
|
| | |
| | | #ifndef GEMM_H |
| | | #define GEMM_H |
| | | #include "activations.h" |
| | | |
| | | static inline void set_bit(unsigned char *const dst, size_t index) { |
| | | size_t dst_i = index / 8; |
| | |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size); |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size); |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr); |
| | | |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col); |
| | | |
| | | //void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | //unsigned char *A, int lda, |
| | | //unsigned char *B, int ldb, |
| | | //float *C, int ldc, float *mean_arr) |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a); |
| | | |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | |
| | | if (l->xnor) { |
| | | //printf("\n %d \n", j); |
| | | size_t ldb_align = 256; // 256bit for AVX2 |
| | | if (l->size*l->size*l->c > 4096) ldb_align = 4096; |
| | | |
| | | binary_transpose_align_weights(l, ldb_align); |
| | | binary_align_weights(l, ldb_align); |
| | | } |
| | | } |
| | | } |