5 files modified
1 files added
| | |
| | | } |
| | | } |
| | | |
| | | void train_imagenet() |
| | | void train_imagenet(char *cfgfile) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.part"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_learning_network(&net, .000001, .9, .0005); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | int i = 9540; |
| | | int i = 20590; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 224, 224, &buffer); |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | |
| | |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 224, 224, &buffer); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_detection() |
| | | void test_detection(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet.test"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char filename[256]; |
| | |
| | | void train_cifar10() |
| | | { |
| | | srand(555555); |
| | | network net = parse_network_cfg("cfg/cifar10.cfg"); |
| | | network net = parse_network_cfg("cfg/cifar_ramp.part"); |
| | | data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
| | | int count = 0; |
| | | int iters = 10000/net.batch; |
| | | data train = load_all_cifar10(); |
| | | while(++count <= 10000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | //visualize_network(net); |
| | | //cvWaitKey(5000); |
| | |
| | | //float test_acc = network_accuracy(net, test); |
| | | //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | if(count%10 == 0){ |
| | | float test_acc = network_accuracy(net, test); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count); |
| | | sprintf(buff, "/home/pjreddie/cifar/cifar10_%d.cfg", count); |
| | | save_network(net, buff); |
| | | }else{ |
| | | printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | int count = 0; |
| | | |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | network net; |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224,224); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_cpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | |
| | | free_data(train); |
| | | } |
| | | #endif |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256,256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_cpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | | void run_server() |
| | |
| | | #ifdef GPU |
| | | cl_setup(index); |
| | | #endif |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "cifar")) train_cifar10(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "server")) run_server(); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(); |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | else if(argc < 3){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | |
| | | layer->crop_width = crop_width; |
| | | layer->crop_height = crop_height; |
| | | layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float)); |
| | | layer->delta = calloc(crop_width*crop_height * c*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_cl = cl_make_array(layer->output, crop_width*crop_height*c*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | void forward_crop_layer(const crop_layer layer, float *input) |
| | | { |
| | | int i,j,c,b; |
| | | int i,j,c,b,row,col; |
| | | int index; |
| | | int count = 0; |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height); |
| | | int dw = rand()%(layer.w - layer.crop_width); |
| | | int count = 0; |
| | | if(layer.flip && rand()%2){ |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = dh; i < dh+layer.crop_height; ++i){ |
| | | for(j = dw+layer.crop_width-1; j >= dw; --j){ |
| | | int index = j+layer.w*(i+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = input[index]; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = 0; i < layer.crop_height; ++i){ |
| | | for(j = 0; j < layer.crop_width; ++j){ |
| | | if(flip){ |
| | | col = layer.w - dw - j - 1; |
| | | }else{ |
| | | col = j + dw; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | }else{ |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = dh; i < dh+layer.crop_height; ++i){ |
| | | for(j = dw; j < dw+layer.crop_width; ++j){ |
| | | int index = j+layer.w*(i+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = input[index]; |
| | | } |
| | | row = i + dh; |
| | | index = col+layer.w*(row+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = input[index]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | cl_kernel get_crop_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/crop_layer.cl", "forward", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void forward_crop_layer_gpu(crop_layer layer, cl_mem input) |
| | | { |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height); |
| | | int dw = rand()%(layer.w - layer.crop_width); |
| | | int size = layer.batch*layer.c*layer.crop_width*layer.crop_height; |
| | | |
| | | cl_kernel kernel = get_crop_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_height), (void*) &layer.crop_height); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_width), (void*) &layer.crop_width); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(dh), (void*) &dh); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(dw), (void*) &dw); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(flip), (void*) &flip); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {size}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | #endif |
| New file |
| | |
| | | __kernel void forward(__global float *input, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, __global float *output) |
| | | { |
| | | int id = get_global_id(0); |
| | | int count = id; |
| | | int j = id % crop_width; |
| | | id /= crop_width; |
| | | int i = id % crop_height; |
| | | id /= crop_height; |
| | | int k = id % c; |
| | | id /= c; |
| | | int b = id; |
| | | int col = (flip) ? w - dw - j - 1 : j + dw; |
| | | int row = i + dh; |
| | | int index = col+w*(row+h*(k + c*b)); |
| | | output[count] = input[index]; |
| | | } |
| | |
| | | #ifndef CROP_LAYER_H |
| | | #define CROP_LAYER_H |
| | | |
| | | #include "opencl.h" |
| | | #include "image.h" |
| | | |
| | | typedef struct { |
| | |
| | | int crop_width; |
| | | int crop_height; |
| | | int flip; |
| | | float *delta; |
| | | float *output; |
| | | #ifdef GPU |
| | | cl_mem output_cl; |
| | | #endif |
| | | } crop_layer; |
| | | |
| | | image get_crop_image(crop_layer layer); |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip); |
| | | void forward_crop_layer(const crop_layer layer, float *input); |
| | | void backward_crop_layer(const crop_layer layer, float *input, float *delta); |
| | | |
| | | #ifdef GPU |
| | | void forward_crop_layer_gpu(crop_layer layer, cl_mem input); |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer_gpu(layer, input); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | //printf("%d %f\n", i, sec(clock()-time)); |
| | | /* |
| | | else if(net.types[i] == CROP){ |
| | |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | |
| | | |
| | | float *network_predict_gpu(network net, float *input) |
| | | { |
| | | |
| | | |
| | | int size = get_network_input_size(net) * net.batch; |
| | | cl_mem input_cl = cl_make_array(input, size); |
| | | forward_network_gpu(net, input_cl, 0, 0); |