2 files modified
7 files added
| | |
| | | def main(): |
| | | random.seed() |
| | | data_list = [] |
| | | for subdir in glob('%s/train/*' % transform_data.data_dir): |
| | | for subdir in glob('%s/train/*_10' % transform_data.data_dir): |
| | | for data in glob(subdir + "/*.jpg"): |
| | | data_list.append(os.path.abspath(data)) |
| | | random.shuffle(data_list) |
| | |
| | | test_ratio = 0.1 |
| | | test_list = data_list[:int(test_ratio * len(data_list))] |
| | | train_list = data_list[int(test_ratio * len(data_list)):] |
| | | with open('%s/train.txt' % transform_data.darknet_dir, 'w') as train_txt: |
| | | with open('%s/train_10.txt' % transform_data.darknet_dir, 'w') as train_txt: |
| | | for data in train_list: |
| | | train_txt.write(data + '\n') |
| | | with open('%s/test.txt' % transform_data.darknet_dir, 'w') as test_txt: |
| | | with open('%s/test_10.txt' % transform_data.darknet_dir, 'w') as test_txt: |
| | | for data in test_list: |
| | | test_txt.write(data + '\n') |
| | | return |
| | |
| | | |
| | | if i % 3 == 0: |
| | | generator.generate_non_obstructive() |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_custom/%s_%d' |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_10/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | elif i % 3 == 1: |
| | | generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_custom/%s_%d' |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_10/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | else: |
| | | generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_custom/%s_%d' |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_10/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | |
| | | #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |