Added detection on images from the txt list file by using SO/DLL.
| | |
| | | #ifdef OPENCV |
| | | std::string const file_ext = filename.substr(filename.find_last_of(".") + 1); |
| | | if (file_ext == "avi" || file_ext == "mp4" || file_ext == "mjpg" || file_ext == "mov") { // video file |
| | | cv::Mat frame, prev_frame; |
| | | cv::Mat frame, prev_frame, det_frame; |
| | | std::vector<bbox_t> result_vec, thread_result_vec; |
| | | detector.nms = 0.02; // comment it - if track_id is not required |
| | | std::thread td([]() {}); |
| | | for (cv::VideoCapture cap(filename); cap >> frame, cap.isOpened();) { |
| | | td.join(); |
| | | result_vec = thread_result_vec; |
| | | cv::Mat det_frame = frame; |
| | | td = std::thread([&]() { thread_result_vec = detector.detect(det_frame, 0.2); }); |
| | | det_frame = frame; |
| | | td = std::thread([&]() { thread_result_vec = detector.detect(det_frame, 0.2, true); }); |
| | | |
| | | if (!prev_frame.empty()) { |
| | | result_vec = detector.tracking(result_vec); // comment it - if track_id is not required |
| | |
| | | prev_frame = frame; |
| | | } |
| | | } |
| | | else if (file_ext == "txt") { // list of image files |
| | | std::ifstream file(filename); |
| | | if (!file.is_open()) std::cout << "File not found! \n"; |
| | | else |
| | | for (std::string line; file >> line;) { |
| | | std::cout << line << std::endl; |
| | | show_result(detector.detect(cv::imread(line)), obj_names); |
| | | } |
| | | |
| | | } |
| | | else { // image file |
| | | cv::Mat mat_img = cv::imread(filename); |
| | | std::vector<bbox_t> result_vec = detector.detect(mat_img); |
| | |
| | | image images[FRAMES]; |
| | | float *avg; |
| | | float *predictions[FRAMES]; |
| | | int demo_index; |
| | | }; |
| | | |
| | | |
| | |
| | | } |
| | | |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh) |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean) |
| | | { |
| | | std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; }); |
| | | *image_ptr = load_image(image_filename); |
| | | return detect(*image_ptr, thresh); |
| | | return detect(*image_ptr, thresh, use_mean); |
| | | } |
| | | |
| | | static image load_image_stb(char *filename, int channels) |
| | |
| | | } |
| | | } |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh) |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean) |
| | | { |
| | | |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | |
| | | |
| | | float *X = sized.data; |
| | | |
| | | network_predict(net, X); |
| | | float *prediction = network_predict(net, X); |
| | | |
| | | if (use_mean) { |
| | | memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float)); |
| | | mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg); |
| | | l.output = detector_gpu.avg; |
| | | detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES; |
| | | } |
| | | |
| | | get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
| | | if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
| | |
| | | |
| | | bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), [&](bbox_t const& b) { return b.track_id == i.track_id; }); |
| | | |
| | | if (cur_index >= 0 && track_id_absent) |
| | | if (cur_index >= 0 && track_id_absent) { |
| | | cur_bbox_vec[cur_index].track_id = i.track_id; |
| | | cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2; |
| | | cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2; |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0); |
| | | YOLODLL_API ~Detector(); |
| | | |
| | | YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2); |
| | | YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2); |
| | | YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false); |
| | | YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false); |
| | | static YOLODLL_API image_t load_image(std::string image_filename); |
| | | static YOLODLL_API void free_image(image_t m); |
| | | YOLODLL_API int get_net_width(); |
| | |
| | | YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 4); |
| | | |
| | | #ifdef OPENCV |
| | | std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2) |
| | | std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) |
| | | { |
| | | if(mat.data == NULL) |
| | | throw std::runtime_error("file not found"); |