cleaned up data parsing a lot. probably nothing broken?
| | |
| | | save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
| | | } |
| | | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
| | | free_data(train); |
| | | } |
| | | |
| | | void train_asirra() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | |
| | | list *plist = get_paths("data/assira/train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | clock_t time; |
| | | |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256); |
| | | data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | |
| | | void train_detection_net() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void train_imagenet() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | | network net = parse_network_cfg("cfg/alexnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | |
| | | srand(time(0)); |
| | | |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
| | | char *path = "/home/pjreddie/data/imagenet/cls.val.list"; |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | int splits = 50; |
| | | |
| | | for(i = 0; i < splits; ++i){ |
| | | time=clock(); |
| | | data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256); |
| | | char **part = paths+(i*m/splits); |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | data val = load_data(part, num, labels, 1000, 256, 256); |
| | | normalize_data_rows(val); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | |
| | | void train_imagenet_small() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_small.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs=1; |
| | | srand(111222); |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | | srand(2222222); |
| | | int i,j; |
| | | int total = 100; |
| | | char *labels[] = {"cat","dog"}; |
| | | FILE *fp = fopen("preds.txt","w"); |
| | | for(i = 0; i < total; ++i){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,test.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x, 0, 0); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | | free_data(test); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void test_cifar10() |
| | | { |
| | |
| | | save_network(net, "cfg/voc_imagenet_rev.cfg"); |
| | | } |
| | | |
| | | void tune_VOC() |
| | | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_start.cfg"); |
| | | srand(2222222); |
| | | int i = 20; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .000005; |
| | | float momentum = .9; |
| | | float decay = 0.0001; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256); |
| | | |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | |
| | | translate_data_rows(train, -144); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 10); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | /* |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | */ |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | int voc_size(int x) |
| | | { |
| | | x = x-1+3; |
| | | x = x-1+3; |
| | | x = x-1+3; |
| | | x = (x-1)*2+1; |
| | | x = x-1+5; |
| | | x = (x-1)*2+1; |
| | | x = (x-1)*4+11; |
| | | return x; |
| | | } |
| | | |
| | | image features_output_size(network net, IplImage *src, int outh, int outw) |
| | | { |
| | | int h = voc_size(outh); |
| | | int w = voc_size(outw); |
| | | fprintf(stderr, "%d %d\n", h, w); |
| | | |
| | | IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | //normalize_array(im.data, im.h*im.w*im.c); |
| | | translate_image(im, -144); |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0, 0); |
| | | image out = get_network_image(net); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | | return copy_image(out); |
| | | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void features_VOC_image_size(char *image_path, int h, int w) |
| | | |
| | | void test_gpu_net() |
| | | { |
| | | int j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | fprintf(stderr, "%s\n", image_path); |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | int count = 0; |
| | | int iters = 1000/net.batch; |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
| | | image out = features_output_size(net, src, h, w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0) printf(","); |
| | | printf("%g", out.data[j]); |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | if(argc < 2){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | printf("\n"); |
| | | free_image(out); |
| | | cvReleaseImage(&src); |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | test_parser(); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | | |
| | | /* |
| | | void visualize_imagenet_topk(char *filename) |
| | | { |
| | | int i,j,k,l; |
| | |
| | | } |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0, 0); |
| | | |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval) |
| | | { |
| | | int i,j; |
| | |
| | | cvWaitKey(0); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_gpu_net() |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | int count = 0; |
| | | int iters = 1000/net.batch; |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | if(argc < 2){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "train_small")) train_imagenet_small(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | test_parser(); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | | */ |
| | |
| | | return lines; |
| | | } |
| | | |
| | | void fill_truth_det(char *path, float *truth) |
| | | void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale) |
| | | { |
| | | find_replace(path, "imgs", "det"); |
| | | find_replace(path, ".JPEG", ".txt"); |
| | | int box_height = height/num_height; |
| | | int box_width = width/num_width; |
| | | char *labelpath = find_replace(path, "imgs", "det"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | FILE *file = fopen(labelpath, "r"); |
| | | int x, y, h, w; |
| | | while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){ |
| | | int i = x/box_width; |
| | | int j = y/box_height; |
| | | float dh = (float)(x%box_width)/box_height; |
| | | float dw = (float)(y%box_width)/box_width; |
| | | float sh = h/scale; |
| | | float sw = w/scale; |
| | | int index = (i+j*num_width)*5; |
| | | truth[index++] = 1; |
| | | truth[index++] = dh; |
| | | truth[index++] = dw; |
| | | truth[index++] = sh; |
| | | truth[index++] = sw; |
| | | } |
| | | } |
| | | |
| | | void fill_truth(char *path, char **labels, int k, float *truth) |
| | |
| | | } |
| | | } |
| | | |
| | | data load_data_image_paths(char **paths, int n, char **labels, int k, int h, int w) |
| | | matrix load_image_paths(char **paths, int n, int h, int w) |
| | | { |
| | | int i; |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X.rows = n; |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.X.cols = 0; |
| | | d.y = make_matrix(n, k); |
| | | matrix X; |
| | | X.rows = n; |
| | | X.vals = calloc(X.rows, sizeof(float*)); |
| | | X.cols = 0; |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | | image im = load_image_color(paths[i], h, w); |
| | | d.X.vals[i] = im.data; |
| | | d.X.cols = im.h*im.w*im.c; |
| | | X.vals[i] = im.data; |
| | | X.cols = im.h*im.w*im.c; |
| | | } |
| | | return X; |
| | | } |
| | | |
| | | matrix load_labels_paths(char **paths, int n, char **labels, int k) |
| | | { |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | fill_truth(paths[i], labels, k, d.y.vals[i]); |
| | | fill_truth(paths[i], labels, k, y.vals[i]); |
| | | } |
| | | return d; |
| | | return y; |
| | | } |
| | | |
| | | matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width, float scale) |
| | | { |
| | | int k = num_height*num_width*5; |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale); |
| | | } |
| | | return y; |
| | | } |
| | | |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | data d = load_data_image_paths(paths, plist->size, labels, k, h, w); |
| | | int n = plist->size; |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | free(paths); |
| | |
| | | } |
| | | } |
| | | |
| | | data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w) |
| | | data load_data_detection_random(int n, char **paths, int m, char **labels, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int start = part*plist->size/total; |
| | | int end = (part+1)*plist->size/total; |
| | | data d = load_data_image_paths(paths+start, end-start, labels, k, h, w); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | free(paths); |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(random_paths, n, h, w); |
| | | d.y = load_labels_detection(random_paths, n, h, w, nh, nw, scale); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w) |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | return d; |
| | | } |
| | | |
| | |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d = load_data_image_paths(random_paths, n, labels, k, h, w); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_image_pathfile_random(char *filename, int n, char **labels, int k, int h, int w) |
| | | { |
| | | int i; |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%plist->size; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d = load_data_image_paths(random_paths, n, labels, k, h, w); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | free(paths); |
| | | data d = load_data(random_paths, n, labels, k, h, w); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | |
| | | |
| | | |
| | | void free_data(data d); |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w); |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w); |
| | | data load_data_detection_random(int n, char **paths, int m, char **labels, int h, int w, int nh, int nw, float scale); |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); |
| | | data load_data_image_pathfile_part(char *filename, int part, int total, |
| | | char **labels, int k, int h, int w); |
| | | data load_data_image_pathfile_random(char *filename, int n, char **labels, |
| | | int k, int h, int w); |
| | | data load_cifar10_data(char *filename); |
| | | data load_all_cifar10(); |
| | | list *get_paths(char *filename); |