syncing messed something up
7 files modified
1 files added
| | |
| | | filters=1024 |
| | | activation=ramp |
| | | |
| | | [convolutional] |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=ramp |
| | | |
| | | [connected] |
| | | output=4096 |
| | | activation=ramp |
| | |
| | | filters=1024 |
| | | activation=ramp |
| | | |
| | | [convolutional] |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | filters=1024 |
| | | activation=ramp |
| | | |
| | | [connected] |
| | | output=4096 |
| | | activation=ramp |
| | |
| | | rescore=1 |
| | | nuisance = 0 |
| | | background=0 |
| | | |
| | |
| | | data load_data_writing(char **paths, int n, int m, int w, int h) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | char **replace_paths = find_replace_paths(paths, n, ".png", "label.png"); |
| | | char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.y = load_image_paths_gray(replace_paths, n, w/4, h/4); |
| | | d.y = load_image_paths_gray(replace_paths, n, w/8, h/8); |
| | | if(m) free(paths); |
| | | int i; |
| | | for(i = 0; i < n; ++i) free(replace_paths[i]); |
| | |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > .4){ |
| | | if(box[j+class] > .05){ |
| | | //int z; |
| | | //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | |
| | | //float maxheight = distance_from_edge(r, side); |
| | | //float maxwidth = distance_from_edge(c, side); |
| | | j += classes; |
| | | float y = box[j+0]; |
| | | float x = box[j+1]; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | draw_detection(copy, train.y.vals[114], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | if(i == 100){ |
| | | net.learning_rate *= 10; |
| | | } |
| | | if(i%100==0){ |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | int ci = k+classes+background+nuisance; |
| | | float x = (pred.vals[j][ci + 0] + col)/num_boxes; |
| | | float y = (pred.vals[j][ci + 1] + row)/num_boxes; |
| | | float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes); |
| | | float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes); |
| | | w = pow(w, 2); |
| | | h = pow(h, 2); |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | |
| | | srand(time(0)); |
| | | |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | | int nuisance = layer.nuisance; |
| | | int background = (layer.background && !nuisance); |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int per_box = 4+classes+background+nuisance; |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | |
| | | int nthreads = 4; |
| | | int t; |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | |
| | | time_t start = time(0); |
| | | |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | //clock_t time; |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | //time=clock(); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i < splits; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | //fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | fprintf(stderr, "%d\n", i); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void do_mask(network net, data d, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | printf("%d ", offset + j); |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.-pred.vals[j][k]; |
| | | printf("%f ", scale); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void mask_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | do_mask(net, val[t], (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | time=clock(); |
| | |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, im_size, im_size); |
| | | image im = load_image_color(filename,0,0); |
| | | image sized = resize_image(im, im_size, im_size); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7, "detections"); |
| | | draw_detection(im, predictions, 7, "YOLO#SWAG#BLAZEIT"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | |
| | |
| | | else if(0==strcmp(argv[2], "teststuff")) train_detection_teststuff(cfg, weights); |
| | | else if(0==strcmp(argv[2], "trainloc")) train_localization(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights); |
| | | else if(0==strcmp(argv[2], "mask")) mask_detection(cfg, weights); |
| | | else if(0==strcmp(argv[2], "validpost")) validate_detection_post(cfg, weights); |
| | | } |
| | |
| | | l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); |
| | | l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); |
| | | l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); |
| | | if(1){ |
| | | if(0){ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | if(state.truth[j]) state.truth[j] = iou; |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | } |
| | | |
| | | /* |
| | | */ |
| | | } |
| | | printf("Avg IOU: %f\n", avg_iou/count); |
| | | } |
| | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | |
| | | /* |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[114]); |
| | | show_image(im, "training"); |
| | | cvWaitKey(0); |
| | |
| | | float *get_network_output_layer_gpu(network net, int i) |
| | | { |
| | | layer l = net.layers[i]; |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | if(l.type == CONVOLUTIONAL){ |
| | | return l.output; |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | return l.output; |
| | | } else if(l.type == CONNECTED){ |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | return l.output; |
| | | } else if(l.type == DETECTION){ |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | return l.output; |
| | | } else if(l.type == MAXPOOL){ |
| | | return l.output; |
| | | } else if(l.type == SOFTMAX){ |
| | | pull_softmax_layer_output(l); |
| | | return l.output; |
| | | } |
| | | return 0; |
| New file |
| | |
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | void train_writing(char *cfgfile, char *weightfile) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | list *plist = get_paths("figures.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | ++i; |
| | | time=clock(); |
| | | data train = load_data_writing(paths, imgs, plist->size, 512, 512); |
| | | float loss = train_network(net, train); |
| | | #ifdef GPU |
| | | float *out = get_network_output_gpu(net); |
| | | #else |
| | | float *out = get_network_output(net); |
| | | #endif |
| | | image pred = float_to_image(64, 64, 1, out); |
| | | print_image(pred); |
| | | |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[0]); |
| | | image lab = float_to_image(64, 64, 1, train.y.vals[0]); |
| | | image pred = float_to_image(64, 64, 1, out); |
| | | show_image(im, "image"); |
| | | show_image(lab, "label"); |
| | | print_image(lab); |
| | | show_image(pred, "pred"); |
| | | cvWaitKey(0); |
| | | */ |
| | | |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if((i % 20000) == 0) net.learning_rate *= .1; |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void run_writing(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_writing(cfg, weights); |
| | | } |
| | | |