per image randomness in crop layer
| | |
| | | GPU=0 |
| | | GPU=1 |
| | | DEBUG=0 |
| | | ARCH= -arch=sm_52 |
| | | |
| | |
| | | return float_to_image(w,h,c,layer.output); |
| | | } |
| | | |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle) |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure) |
| | | { |
| | | fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c); |
| | | crop_layer *layer = calloc(1, sizeof(crop_layer)); |
| | |
| | | layer->c = c; |
| | | layer->flip = flip; |
| | | layer->angle = angle; |
| | | layer->saturation = saturation; |
| | | layer->exposure = exposure; |
| | | layer->crop_width = crop_width; |
| | | layer->crop_height = crop_height; |
| | | layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch); |
| | | layer->rand_gpu = cuda_make_array(0, layer->batch*8); |
| | | #endif |
| | | return layer; |
| | | } |
| | |
| | | int crop_height; |
| | | int flip; |
| | | float angle; |
| | | float saturation; |
| | | float exposure; |
| | | float *output; |
| | | #ifdef GPU |
| | | float *output_gpu; |
| | | float *rand_gpu; |
| | | #endif |
| | | } crop_layer; |
| | | |
| | | image get_crop_image(crop_layer layer); |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle); |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure); |
| | | void forward_crop_layer(const crop_layer layer, network_state state); |
| | | |
| | | #ifdef GPU |
| | |
| | | return val; |
| | | } |
| | | |
| | | __global__ void levels_image_kernel(float *image, int batch, int w, int h, float saturation, float exposure, float translate, float scale) |
| | | __global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale) |
| | | { |
| | | int size = batch * w * h; |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | |
| | | id /= w; |
| | | int y = id % h; |
| | | id /= h; |
| | | float r0 = rand[8*id + 0]; |
| | | float r1 = rand[8*id + 1]; |
| | | float r2 = rand[8*id + 2]; |
| | | float r3 = rand[8*id + 3]; |
| | | |
| | | saturation = r0*(saturation - 1) + 1; |
| | | saturation = (r1 > .5) ? 1./saturation : saturation; |
| | | exposure = r2*(exposure - 1) + 1; |
| | | exposure = (r3 > .5) ? 1./exposure : exposure; |
| | | |
| | | size_t offset = id * h * w * 3; |
| | | image += offset; |
| | | float r = image[x + w*(y + h*2)]; |
| | | float g = image[x + w*(y + h*1)]; |
| | | float b = image[x + w*(y + h*0)]; |
| | | float3 rgb = make_float3(r,g,b); |
| | | float3 hsv = rgb_to_hsv_kernel(rgb); |
| | | hsv.y *= saturation; |
| | | hsv.z *= exposure; |
| | | rgb = hsv_to_rgb_kernel(hsv); |
| | | if(train){ |
| | | float3 hsv = rgb_to_hsv_kernel(rgb); |
| | | hsv.y *= saturation; |
| | | hsv.z *= exposure; |
| | | rgb = hsv_to_rgb_kernel(hsv); |
| | | } |
| | | image[x + w*(y + h*2)] = rgb.x*scale + translate; |
| | | image[x + w*(y + h*1)] = rgb.y*scale + translate; |
| | | image[x + w*(y + h*0)] = rgb.z*scale + translate; |
| | | } |
| | | |
| | | __global__ void forward_crop_layer_kernel(float *input, int size, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, float angle, float *output) |
| | | __global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output) |
| | | { |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(id >= size) return; |
| | |
| | | id /= c; |
| | | int b = id; |
| | | |
| | | float r4 = rand[8*b + 4]; |
| | | float r5 = rand[8*b + 5]; |
| | | float r6 = rand[8*b + 6]; |
| | | float r7 = rand[8*b + 7]; |
| | | |
| | | float dw = (w - crop_width)*r4; |
| | | float dh = (h - crop_height)*r5; |
| | | flip = (flip && (r6 > .5)); |
| | | angle = 2*angle*r7 - angle; |
| | | if(!train){ |
| | | dw = (w - crop_width)/2.; |
| | | dh = (h - crop_height)/2.; |
| | | flip = 0; |
| | | angle = 0; |
| | | } |
| | | |
| | | input += w*h*c*b; |
| | | |
| | | int x = (flip) ? w - dw - j - 1 : j + dw; |
| | | int y = i + dh; |
| | | float x = (flip) ? w - dw - j - 1 : j + dw; |
| | | float y = i + dh; |
| | | |
| | | float rx = cos(angle)*(x-cx) - sin(angle)*(y-cy) + cx; |
| | | float ry = sin(angle)*(x-cx) + cos(angle)*(y-cy) + cy; |
| | |
| | | |
| | | extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state) |
| | | { |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height + 1); |
| | | int dw = rand()%(layer.w - layer.crop_width + 1); |
| | | float radians = layer.angle*3.14159/180.; |
| | | float angle = 2*radians*rand_uniform() - radians; |
| | | cuda_random(layer.rand_gpu, layer.batch*8); |
| | | |
| | | float saturation = rand_uniform() + 1; |
| | | if(rand_uniform() > .5) saturation = 1./saturation; |
| | | float exposure = rand_uniform() + 1; |
| | | if(rand_uniform() > .5) exposure = 1./exposure; |
| | | float radians = layer.angle*3.14159/180.; |
| | | |
| | | float scale = 2; |
| | | float translate = -1; |
| | | |
| | | if(!state.train){ |
| | | angle = 0; |
| | | flip = 0; |
| | | dh = (layer.h - layer.crop_height)/2; |
| | | dw = (layer.w - layer.crop_width)/2; |
| | | saturation = 1; |
| | | exposure = 1; |
| | | } |
| | | |
| | | int size = layer.batch * layer.w * layer.h; |
| | | |
| | | levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.batch, layer.w, layer.h, saturation, exposure, translate, scale); |
| | | levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale); |
| | | check_error(cudaPeekAtLastError()); |
| | | |
| | | |
| | | size = layer.batch*layer.c*layer.crop_width*layer.crop_height; |
| | | |
| | | forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w, |
| | | layer.crop_height, layer.crop_width, dh, dw, flip, angle, layer.output_gpu); |
| | | forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, size, layer.c, layer.h, layer.w, layer.crop_height, layer.crop_width, state.train, layer.flip, radians, layer.output_gpu); |
| | | check_error(cudaPeekAtLastError()); |
| | | |
| | | /* |
| | |
| | | image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch)); |
| | | image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch)); |
| | | image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch)); |
| | | |
| | | translate_image(im, -translate); |
| | | scale_image(im, 1/scale); |
| | | translate_image(im2, -translate); |
| | | scale_image(im2, 1/scale); |
| | | translate_image(im3, -translate); |
| | | scale_image(im3, 1/scale); |
| | | |
| | | show_image(im, "cropped"); |
| | | show_image(im2, "cropped2"); |
| | | show_image(im3, "cropped3"); |
| | |
| | | if(weightfile){ |
| | | load_weights_upto(&net, weightfile, max); |
| | | } |
| | | //net.seen = 0; |
| | | net.seen = 0; |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | translate_image(copy, 1); |
| | | scale_image(copy, .5); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | free_image(copy); |
| | | if(disp->height < 500 || disp->width < 500 || disp->height > 1000){ |
| | | int w = 500; |
| | | if(disp->height < 448 || disp->width < 448 || disp->height > 1000){ |
| | | int w = 448; |
| | | int h = w*p.h/p.w; |
| | | if(h > 1000){ |
| | | h = 1000; |
| | |
| | | } |
| | | IplImage *buffer = disp; |
| | | disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); |
| | | cvResize(buffer, disp, CV_INTER_NN); |
| | | cvResize(buffer, disp, CV_INTER_LINEAR); |
| | | cvReleaseImage(&buffer); |
| | | } |
| | | cvShowImage(buff, disp); |
| | |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | float angle = option_find_float(options, "angle",0); |
| | | float saturation = option_find_float(options, "saturation",1); |
| | | float exposure = option_find_float(options, "exposure",1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle); |
| | | crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
| | | option_unused(options); |
| | | return layer; |
| | | } |