3 files modified
1 files added
| New file |
| | |
| | | rem # How to calculate Yolo v2 anchors using K-means++ |
| | | |
| | | |
| | | darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13 |
| | | |
| | | |
| | | |
| | | pause |
| | |
| | | classes= 20 |
| | | train = data/voc/train.txt |
| | | train = data/train_voc.txt |
| | | valid = data/voc/2007_test.txt |
| | | #difficult = data/voc/difficult_2007_test.txt |
| | | names = data/voc.names |
| | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/core/core_c.h" |
| | | //#include "opencv2/core/core.hpp" |
| | | #include "opencv2/core/version.hpp" |
| | | #include "opencv2/imgproc/imgproc_c.h" |
| | | |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) |
| | | { |
| | | printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height); |
| | | |
| | | //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; |
| | | float *rel_width_height_array = calloc(1000, sizeof(float)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | | list *plist = get_paths(train_images); |
| | | int number_of_images = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int number_of_boxes = 0; |
| | | printf(" read labels from %d images \n", number_of_images); |
| | | |
| | | int i, j; |
| | | for (i = 0; i < number_of_images; ++i) { |
| | | char *path = paths[i]; |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | //printf(" new path: %s \n", labelpath); |
| | | for (j = 0; j < num_labels; ++j) |
| | | { |
| | | number_of_boxes++; |
| | | rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); |
| | | rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width; |
| | | rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height; |
| | | printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); |
| | | } |
| | | } |
| | | printf("\n all loaded. \n"); |
| | | |
| | | //int number_of_boxes = 10; |
| | | CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); |
| | | CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); |
| | | CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); |
| | | |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | points->data.fl[i * 2] = rel_width_height_array[i * 2]; |
| | | points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; |
| | | //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0)); |
| | | //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0)); |
| | | } |
| | | |
| | | |
| | | const int attemps = 1000; |
| | | double compactness; |
| | | |
| | | enum { |
| | | KMEANS_RANDOM_CENTERS = 0, |
| | | KMEANS_USE_INITIAL_LABELS = 1, |
| | | KMEANS_PP_CENTERS = 2 |
| | | }; |
| | | |
| | | printf("\n calculating k-means++ ..."); |
| | | // Should be used: distance(box, centroid) = 1 - IoU(box, centroid) |
| | | cvKMeans2(points, num_of_clusters, labels, |
| | | cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 1000, 0), attemps, |
| | | 0, KMEANS_RANDOM_CENTERS, |
| | | centers, &compactness); |
| | | |
| | | printf("\n"); |
| | | printf("anchors = "); |
| | | for (i = 0; i < num_of_clusters; ++i) { |
| | | printf("%2.2f,%2.2f, ", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); |
| | | } |
| | | |
| | | //for (i = 0; i < number_of_boxes; ++i) |
| | | // printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]); |
| | | |
| | | free(rel_width_height_array); |
| | | cvReleaseMat(&points); |
| | | cvReleaseMat(¢ers); |
| | | cvReleaseMat(&labels); |
| | | } |
| | | #else |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) { |
| | | printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); |
| | | } |
| | | #endif // OPENCV |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | | int final_width = find_int_arg(argc, argv, "-final_width", 13); |
| | | int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | |
| | | { |
| | | if (l.reverse) { |
| | | reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 0, state.delta); |
| | | //reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta); |
| | | } |
| | | else { |
| | | reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 1, state.delta); |
| | | //reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta); |
| | | } |
| | | } |
| | | #endif |