XNOR-net 21 FPS on CPU yolov2-tiny.cfg
| | |
| | | return most; |
| | | } |
| | | #endif |
| | | if(l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); |
| | | return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float); |
| | | } |
| | | |
| | |
| | | if(xnor){ |
| | | l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); |
| | | |
| | | int align = 8; |
| | | int src_align = l.out_h*l.out_w; |
| | | l.bit_align = src_align + (align - src_align % align); |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | |
| | | } |
| | | |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | int blocksize = 64; |
| | | transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize); |
| | | int src_size = k * bit_align; |
| | | |
| | | //printf("\n blocksize = %d \n", blocksize); |
| | | float_to_bit(b, t_input, src_size); |
| | | |
| | | float_to_bit(t_input, *t_bit_input, t_intput_size); |
| | | // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size |
| | | // t_input - [bit_align, k] - [n', k] |
| | | // t_bit_input - [new_ldb, n] - [k', n] |
| | | |
| | | transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | //transpose_bin(b, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | |
| | | free(t_input); |
| | | |
| | | return t_intput_size; |
| | |
| | | //if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {} |
| | | //else |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | //im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | | //im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float)); |
| | | im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); |
| | | |
| | | size_t output_size = l.outputs; |
| | | //float *count_output = calloc(output_size, sizeof(float)); |
| | | //size_t bit_output_size = output_size / 8 + 1; |
| | |
| | | int ldb_align = l.lda_align; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align, l.bit_align); |
| | | //char *t_bit_input = calloc(new_ldb * n, sizeof(char)); // for im2col_cpu_custom_transpose() only |
| | | //float_to_bit(t_input, t_bit_input, new_ldb * n); // for im2col_cpu_custom_transpose() only |
| | | |
| | |
| | | //free(mean_arr); |
| | | } |
| | | else { |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); |
| | | // bit-count to float |
| | | } |
| | |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | #include <float.h> |
| | | #include <string.h> |
| | | |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads( max_num_threads / 2); |
| | | //omp_set_num_threads( max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void transpose_8x8_bits(unsigned char A[8], unsigned char B[8], int m, int n) |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | |
| | | //int algin = 8; |
| | | //int ldb = width_col * height_col; |
| | | //int new_ldb = ldb + (algin - ldb % algin); |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | |
| | | /*/ |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | data_col[col_index / 8] = mask; // dst[i / 8] = mask; |
| | | */ |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | //if(val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | |
| | | /* |
| | | int src_size = bit_align*channels_col; |
| | | char *bit_arr = calloc(src_size, sizeof(float)); |
| | | float_to_bit(data_col, bit_arr, src_size); |
| | | memcpy(data_col, bit_arr, src_size * sizeof(float)); |
| | | free(bit_arr); |
| | | */ |
| | | } |
| | | |
| | | |
| | | void transpose_8x8_bits_my(unsigned char *A, unsigned char *B, int lda, int ldb) |
| | | { |
| | | unsigned x, y, t; |
| | | for (y = 0; y < 8; ++y) { |
| | | for (x = 0; x < 8; ++x) { |
| | | if(A[y * lda] & (1 << x)) B[x * ldb] |= 1 << y; |
| | | } |
| | | } |
| | | } |
| | | |
| | | unsigned char reverse_byte_1(char a) |
| | | { |
| | | return ((a & 0x1) << 7) | ((a & 0x2) << 5) | |
| | | ((a & 0x4) << 3) | ((a & 0x8) << 1) | |
| | | ((a & 0x10) >> 1) | ((a & 0x20) >> 3) | |
| | | ((a & 0x40) >> 5) | ((a & 0x80) >> 7); |
| | | } |
| | | |
| | | unsigned char reverse_byte_2(unsigned char a) |
| | | { |
| | | return ((a * 0x0802LU & 0x22110LU) | (a * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; |
| | | } |
| | | |
| | | static unsigned char lookup[16] = { |
| | | 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| | | 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf, }; |
| | | |
| | | unsigned char reverse_byte(unsigned char n) { |
| | | // Reverse the top and bottom nibble then swap them. |
| | | return (lookup[n & 0b1111] << 4) | lookup[n >> 4]; |
| | | } |
| | | |
| | | |
| | | void transpose8rS32_reversed_diagonale(unsigned char* A, int m, int n, unsigned char* B) |
| | | { |
| | | unsigned x, y, t; |
| | | |
| | | // Load the array and pack it into x and y. |
| | | |
| | | x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m]; |
| | | y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m]; |
| | | |
| | |
| | | y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F); |
| | | x = t; |
| | | |
| | | B[0] = x >> 24; B[n] = x >> 16; B[2 * n] = x >> 8; B[3 * n] = x; |
| | | B[4 * n] = y >> 24; B[5 * n] = y >> 16; B[6 * n] = y >> 8; B[7 * n] = y; |
| | | B[7 * n] = reverse_byte(x >> 24); B[6 * n] = reverse_byte(x >> 16); B[5 * n] = reverse_byte(x >> 8); B[4 * n] = reverse_byte(x); |
| | | B[3 * n] = reverse_byte(y >> 24); B[2 * n] = reverse_byte(y >> 16); B[1 * n] = reverse_byte(y >> 8); B[0 * n] = reverse_byte(y); |
| | | } |
| | | |
| | | void transpose_bin(char *A, char *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += 8) { |
| | | int j; |
| | | for (j = 0; j < m - 8; j += 8) { |
| | | int a_index = i*lda + j; |
| | | int b_index = j*ldb + i; |
| | | //transpose_8x8_bits_my(&A[a_index/8], &B[b_index/8], lda/8, ldb/8); |
| | | transpose8rS32_reversed_diagonale(&A[a_index / 8], lda / 8, ldb / 8, &B[b_index / 8]); |
| | | } |
| | | for (; j < m; ++j) { |
| | | if (get_bit(A, i*lda + j)) set_bit(B, j*ldb + i); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | |
| | | |
| | | size_t i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.00001); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | //mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&src[i])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint32_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | dst[i / 8] = mask; |
| | | } |
| | |
| | | size_t dst_i = index / 8; |
| | | int dst_shift = index % 8; |
| | | dst[dst_i] |= 1 << dst_shift; |
| | | //dst[dst_i] |= 1 << (8 - dst_shift); |
| | | } |
| | | |
| | | static inline unsigned char get_bit(unsigned char const*const src, size_t index) { |
| | | size_t src_i = index / 8; |
| | | int src_shift = index % 8; |
| | | unsigned char val = (src[src_i] & (1 << src_shift)) > 0; |
| | | //unsigned char val = (src[src_i] & (1 << (8 - src_shift))) > 0; |
| | | return val; |
| | | } |
| | | |
| | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size); |
| | | |
| | | void transpose_bin(char *A, char *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size); |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col); |
| | | |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align); |
| | | |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align); |
| | |
| | | char *align_bit_weights; |
| | | float *mean_arr; |
| | | int lda_align; |
| | | int bit_align; |
| | | |
| | | float *col_image; |
| | | int * input_layers; |