| | |
| | | endif |
| | | endif |
| | | CFLAGS= $(COMMON) $(OPTS) |
| | | #CFLAGS= $(COMMON) -O0 -g |
| | | CFLAGS= $(COMMON) -O0 -g |
| | | LDFLAGS+=`pkg-config --libs opencv` -lm -pthread |
| | | VPATH=./src/ |
| | | EXEC=cnn |
| | |
| | | void train_nist(char *cfgfile) |
| | | { |
| | | srand(222222); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | // srand(time(0)); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | network net = parse_network_cfg(cfgfile); |
| | | int count = 0; |
| | | int iters = 60000/net.batch + 1; |
| | | while(++count <= 10){ |
| | | clock_t start = clock(), end; |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | float loss = train_network_sgd(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = 0; |
| | | //if(count%1 == 0) test_acc = network_accuracy(net, test); |
| | | if(count%1 == 0) test_acc = network_accuracy(net, test); |
| | | end = clock(); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | free_data(train); |
| | | free_data(test); |
| | | char buff[256]; |
| | | sprintf(buff, "%s.trained", cfgfile); |
| | | save_network(net, buff); |
| | |
| | | layer->probability = probability; |
| | | layer->inputs = inputs; |
| | | layer->batch = batch; |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->rand = calloc(inputs*batch, sizeof(float)); |
| | | layer->scale = 1./(1.-probability); |
| | | #ifdef GPU |
| | | layer->output_cl = cl_make_array(layer->output, inputs*batch); |
| | | layer->rand_cl = cl_make_array(layer->rand, inputs*batch); |
| | | #endif |
| | | return layer; |
| | |
| | | for(i = 0; i < layer.batch * layer.inputs; ++i){ |
| | | float r = rand_uniform(); |
| | | layer.rand[i] = r; |
| | | if(r < layer.probability) input[i] = 0; |
| | | else input[i] *= layer.scale; |
| | | if(r < layer.probability) layer.output[i] = 0; |
| | | else layer.output[i] = input[i]*layer.scale; |
| | | } |
| | | } |
| | | |
| | | void backward_dropout_layer(dropout_layer layer, float *delta) |
| | | { |
| | | int i; |
| | | if(!delta) return; |
| | | for(i = 0; i < layer.batch * layer.inputs; ++i){ |
| | | float r = layer.rand[i]; |
| | | if(r < layer.probability) delta[i] = 0; |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {size}; |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {size}; |
| | |
| | | __kernel void yoloswag420blazeit360noscope(__global float *input, __global float *rand, float prob, float scale) |
| | | __kernel void yoloswag420blazeit360noscope(__global float *input, __global float *rand, float prob, float scale, __global float *output) |
| | | { |
| | | int id = get_global_id(0); |
| | | input[id] = (rand[id] < prob) ? 0 : input[id]*scale; |
| | | output[id] = (rand[id] < prob) ? 0 : input[id]*scale; |
| | | } |
| | |
| | | float probability; |
| | | float scale; |
| | | float *rand; |
| | | float *output; |
| | | #ifdef GPU |
| | | cl_mem rand_cl; |
| | | cl_mem output_cl; |
| | | #endif |
| | | } dropout_layer; |
| | | |
| | |
| | | if(!train) continue; |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | if(!train) continue; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_delta_layer(net, i-1); |
| | |
| | | if(!train) continue; |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_cl_layer(net, i-1); |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | return 0; |
| | | } |
| | |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_cl_layer(net, i-1); |
| | | } |
| | | return 0; |
| | |
| | | if(count == 0){ |
| | | net->batch = option_find_int(options, "batch",1); |
| | | input = option_find_int(options, "input",1); |
| | | float learning_rate = option_find_float(options, "learning_rate", .001); |
| | | float momentum = option_find_float(options, "momentum", .9); |
| | | float decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | input = get_network_output_size_layer(*net, count-1); |
| | | } |