Some fixes for AVX support on CPU
| | |
| | | free(align_weights); |
| | | } |
| | | |
| | | |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | |
| | | //} |
| | | //if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {} |
| | | //else |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | |
| | | //char *t_bit_input = calloc(new_ldb * n, sizeof(char)); // for im2col_cpu_custom_transpose() only |
| | | //float_to_bit(t_input, t_bit_input, new_ldb * n); // for im2col_cpu_custom_transpose() only |
| | | |
| | | // 5x times faster than gemm()-float32 |
| | | // further optimizations: accelerate maxpool-layer with OpenMP/AVX |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | |
| | | + _mm256_extract_epi64(val, 3); |
| | | } |
| | | |
| | | // 5x times faster than gemm()-float32 |
| | | // further optimizations: do mean-mult only for the last layer |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx()) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | int i = 0; |
| | | if (a == LINEAR) |
| | | {} |
| | | else if (a == LEAKY) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | if (is_fma_avx()) { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | | for (i = 0; i < n-8; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | for (i = 0; i < n - 8; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&x[i]); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | __m256 src256 = _mm256_loadu_ps(&x[i]); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps(&x[i], result256); |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps(&x[i], result256); |
| | | } |
| | | } |
| | | |
| | | for (; i < n; ++i) { |