| | |
| | | hash_size = [hash_size] |
| | | |
| | | num_cores = 15 |
| | | num_partitions = 60 |
| | | num_partitions = round(card_pool.shape[0]/100) |
| | | if num_partitions < min(num_cores, card_pool.shape[0]): |
| | | num_partitions = min(num_cores, card_pool.shape[0]) |
| | | pool = Pool(num_cores) |
| | | df_split = np.array_split(card_pool, num_partitions) |
| | | new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split])) |
| | |
| | | return corrected |
| | | |
| | | |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000): |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False): |
| | | """ |
| | | Find contours of all cards in the image |
| | | :param img: source image |
| | |
| | | img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| | | img_blur = cv2.medianBlur(img_gray, 5) |
| | | img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c) |
| | | cv2.imshow('Thres', img_thresh) |
| | | if debug: |
| | | cv2.imshow('Thres', img_thresh) |
| | | # Dilute the image, then erode them to remove minor noises |
| | | kernel = np.ones(kernel_size, np.uint8) |
| | | img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) |
| | | img_erode = cv2.erode(img_dilate, kernel, iterations=1) |
| | | cv2.imshow('Eroded', img_erode) |
| | | if debug: |
| | | cv2.imshow('Eroded', img_erode) |
| | | # Find the contour |
| | | cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | if len(cnts) == 0: |
| | |
| | | cnts2 = cnts2[:10] |
| | | for i in range(0, len(cnts2)): |
| | | print(i, len(cnts2[i])) |
| | | cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3) |
| | | cv2.imshow('Contours', img_cont) |
| | | if debug: |
| | | cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3) |
| | | cv2.imshow('Contours', img_cont) |
| | | # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child |
| | | # their previous and next node |
| | | # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition |
| | |
| | | # child with biggest area |
| | | c_list.sort(key=cv2.contourArea, reverse=True) |
| | | c_cnt = c_list[0] # the biggest child |
| | | cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1) |
| | | cv2.imshow('CCont %d' % i_cnt, img_ccont) |
| | | if debug: |
| | | cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1) |
| | | cv2.imshow('CCont %d' % i_cnt, img_ccont) |
| | | c_size = cv2.contourArea(c_cnt) |
| | | c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True) |
| | | if len(c_approx) == 4 and (c_size/size) > 0.85: |
| | |
| | | for x in box: |
| | | b2.append([x]) |
| | | cnts_rect.append(np.array(b2)) |
| | | |
| | | else: |
| | | print('CF:', (c_size/size)) |
| | | print('Size:', size) |
| | | cnts_rect.append(approx) |
| | | else: |
| | | print('CF:', (c_size/size)) |
| | | #print('CF:', (c_size/size)) |
| | | print('Size:', size) |
| | | cnts_rect.append(approx) |
| | | else: |
| | |
| | | img_result = img.copy() # For displaying and saving |
| | | det_cards = [] |
| | | # Detect contours of all cards in the image |
| | | cnts = find_card(img_result, size_thresh=size_thresh) |
| | | cnts = find_card(img_result, size_thresh=size_thresh, debug=debug) |
| | | for i in range(len(cnts)): |
| | | cnt = cnts[i] |
| | | # For the region of the image covered by the contour, transform them into a rectangular image |
| | |
| | | img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]] |
| | | print(img_set_part.shape) |
| | | img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB') |
| | | cv2.imshow("Set Img#%d" % i, img_set_part) |
| | | if debug: |
| | | cv2.imshow("Set Img#%d" % i, img_set_part) |
| | | |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten() |
| | |
| | | hash_diff = min_card['hash_diff'] |
| | | |
| | | top_matches = sorted(card_pool['hash_diff']) |
| | | set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten() |
| | | cd_data = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | print(list(card_pool.columns.values)) |
| | | candidates = [] |
| | | for ix in range(0, 2): |
| | | cdr = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0] |
| | | cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cdr |
| | | cd = cdr |
| | | print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix]) |
| | | card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0] |
| | | card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0] |
| | | |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size] |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash)) |
| | | conf = sorted(cd_data['set_hash_diff']) |
| | | print('Confs:', conf) |
| | | best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0] |
| | | print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set']) |
| | | if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']: |
| | | set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten() |
| | | cd_data = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | print(list(card_pool.columns.values)) |
| | | candidates = [] |
| | | for ix in range(0, 2): |
| | | cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0] |
| | | cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd |
| | | print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix]) |
| | | |
| | | min_card = best_match |
| | | |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size] |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash)) |
| | | conf = sorted(cd_data['set_hash_diff']) |
| | | print('Confs:', conf) |
| | | best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0] |
| | | print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set']) |
| | | |
| | | min_card = best_match |
| | | card_name = min_card['name'] |
| | | card_set = min_card['set'] |
| | | det_cards.append((card_name, card_set)) |
| | |
| | | |
| | | |
| | | def detect_video(capture, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, show_graph=True, debug=False): |
| | | out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0): |
| | | """ |
| | | Identify all cards in the continuous video stream, display or save the result if needed |
| | | :param capture: input video stream |
| | |
| | | # Get the dimension of the output video, and set it up |
| | | if show_graph: |
| | | img_graph = draw_card_graph({}, pd.DataFrame(), -1) # Black image of the graph just to get the dimension |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0]) |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0]) |
| | | height += 200 # some space to display last detected cards |
| | | else: |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) |
| | | height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
| | |
| | | max_num_obj = 0 |
| | | f_len = 10 # number of frames to consider to check for existing cards |
| | | exist_cards = {} |
| | | |
| | | exist_card_single = {} |
| | | written_out_cards = set() |
| | | found_cards = [] |
| | | try: |
| | | while True: |
| | | ret, frame = capture.read() |
| | | croped_img = frame[crop_y:-crop_y, crop_x:-crop_x] |
| | | fimg = cv2.flip(croped_img, -1) |
| | | start_time = time.time() |
| | | if not ret: |
| | | # End of video |
| | |
| | | cv2.waitKey(0) |
| | | break |
| | | # Detect all cards from the current frame |
| | | det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh, |
| | | det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh, |
| | | out_path=None, display=False, debug=debug) |
| | | if show_graph: |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | |
| | | else: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [0] |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone.append(key) |
| | | gone.append(key) # not there anymore |
| | | |
| | | det_card_map = {} |
| | | gone_single = [] |
| | | for card_name, card_set in det_cards: |
| | | skey = '%s (%s)' % (card_name, card_set) |
| | | det_card_map[skey] = (card_name, card_set) |
| | | |
| | | for key, val in exist_card_single.items(): |
| | | if key in det_card_map: |
| | | exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0] |
| | | |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone_single.append(key) |
| | | if key in written_out_cards: |
| | | written_out_cards.remove(key) |
| | | if len(val) == f_len and sum(val) == f_len: |
| | | if key not in written_out_cards and key in det_card_map: |
| | | written_out_cards.add(key) |
| | | found_cards.append(det_card_map[key]) |
| | | |
| | | for key in det_card_map: |
| | | if key not in exist_card_single.keys(): |
| | | exist_card_single[key] = [1] |
| | | for key in gone_single: |
| | | exist_card_single.pop(key) |
| | | |
| | | |
| | | for key in det_cards_list: |
| | | if key not in exist_cards.keys(): |
| | | exist_cards[key] = [1] |
| | | for key in gone: |
| | | exist_cards.pop(key) |
| | | |
| | | |
| | | # Draw the graph based on the history of detected cards, then concatenate it with the result image |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | for c, card in enumerate(reversed(found_cards[-10:]), 1): |
| | | cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
| | | else: |
| | | img_save = img_result |
| | | |
| | |
| | | vid_writer.release() |
| | | cv2.destroyAllWindows() |
| | | |
| | | with open('detect.txt', 'w') as of: |
| | | counter = collections.Counter(found_cards) |
| | | for key in counter: |
| | | of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n') |
| | | |
| | | |
| | | |
| | | def main(args): |
| | | # Specify paths for all necessary files |
| | |
| | | |
| | | # If the test file isn't given, use webcam to capture video |
| | | if args.in_path is None: |
| | | capture = cv2.VideoCapture(0) |
| | | capture = cv2.VideoCapture(0, cv2.CAP_V4L) |
| | | capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG")) |
| | | capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) |
| | | capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path, |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug) |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200) |
| | | capture.release() |
| | | else: |
| | | # Save the detection result if args.out_path is provided |