Constantin Wenger
2019-08-10 f9d5508010c4e67e9b1af6bb8347ba2a3023fa78
added croping and remembering detected cards as well es putting them in a file on termination
1 files modified
128 ■■■■ changed files
opencv_dnn.py 128 ●●●● patch | view | raw | blame | history
opencv_dnn.py
@@ -94,7 +94,9 @@
        hash_size = [hash_size]
    num_cores = 15
    num_partitions = 60
    num_partitions = round(card_pool.shape[0]/100)
    if num_partitions < min(num_cores, card_pool.shape[0]):
        num_partitions = min(num_cores, card_pool.shape[0])
    pool = Pool(num_cores)
    df_split = np.array_split(card_pool, num_partitions)
    new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split]))
@@ -216,7 +218,7 @@
    return corrected
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000):
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False):
    """
    Find contours of all cards in the image
    :param img: source image
@@ -229,12 +231,14 @@
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.medianBlur(img_gray, 5)
    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c)
    cv2.imshow('Thres', img_thresh)
    if debug:
        cv2.imshow('Thres', img_thresh)
    # Dilute the image, then erode them to remove minor noises
    kernel = np.ones(kernel_size, np.uint8)
    img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
    img_erode = cv2.erode(img_dilate, kernel, iterations=1)
    cv2.imshow('Eroded', img_erode)
    if debug:
        cv2.imshow('Eroded', img_erode)
    # Find the contour
    cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    if len(cnts) == 0:
@@ -246,8 +250,9 @@
    cnts2 = cnts2[:10]
    for i in range(0, len(cnts2)):
        print(i, len(cnts2[i]))
    cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
    cv2.imshow('Contours', img_cont)
    if debug:
        cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
        cv2.imshow('Contours', img_cont)
    # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
    # their previous and next node
    # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
@@ -277,8 +282,9 @@
                # child with biggest area
                c_list.sort(key=cv2.contourArea, reverse=True)
                c_cnt = c_list[0]  # the biggest child
                cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
                cv2.imshow('CCont %d' % i_cnt, img_ccont)
                if debug:
                    cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
                    cv2.imshow('CCont %d' % i_cnt, img_ccont)
                c_size = cv2.contourArea(c_cnt)
                c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
                if len(c_approx) == 4 and (c_size/size) > 0.85:
@@ -293,13 +299,12 @@
                    for x in box:
                        b2.append([x])
                    cnts_rect.append(np.array(b2))
                else:
                    print('CF:', (c_size/size))
                    print('Size:', size)
                    cnts_rect.append(approx)
            else:
                print('CF:', (c_size/size))
                #print('CF:', (c_size/size))
                print('Size:', size)
                cnts_rect.append(approx)
        else:
@@ -386,7 +391,7 @@
    img_result = img.copy()  # For displaying and saving
    det_cards = []
    # Detect contours of all cards in the image
    cnts = find_card(img_result, size_thresh=size_thresh)
    cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
    for i in range(len(cnts)):
        cnt = cnts[i]
        # For the region of the image covered by the contour, transform them into a rectangular image
@@ -412,7 +417,8 @@
        img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
        print(img_set_part.shape)
        img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
        cv2.imshow("Set Img#%d" % i, img_set_part)
        if debug:
            cv2.imshow("Set Img#%d" % i, img_set_part)
        # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
        card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
@@ -422,24 +428,28 @@
        hash_diff = min_card['hash_diff']
        top_matches = sorted(card_pool['hash_diff'])
        set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
        cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
        print(list(card_pool.columns.values))
        candidates = []
        for ix in range(0, 2):
            cdr = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
            cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cdr
            cd = cdr
            print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
        card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0]
        card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0]
        cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size]
        cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
        conf = sorted(cd_data['set_hash_diff'])
        print('Confs:', conf)
        best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
        print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
        if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']:
            set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
            cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
            print(list(card_pool.columns.values))
            candidates = []
            for ix in range(0, 2):
                cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
                cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd
                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
        min_card = best_match
            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % hash_size]
            cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
            conf = sorted(cd_data['set_hash_diff'])
            print('Confs:', conf)
            best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
            print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
            min_card = best_match
        card_name = min_card['name']
        card_set = min_card['set']
        det_cards.append((card_name, card_set))
@@ -463,7 +473,7 @@
def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
                 out_path=None, display=True, show_graph=True, debug=False):
                 out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0):
    """
    Identify all cards in the continuous video stream, display or save the result if needed
    :param capture: input video stream
@@ -480,8 +490,9 @@
    # Get the dimension of the output video, and set it up
    if show_graph:
        img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x  + img_graph.shape[1]
        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0])
        height += 200  # some space to display last detected cards
    else:
        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
@@ -490,9 +501,15 @@
    max_num_obj = 0
    f_len = 10  # number of frames to consider to check for existing cards
    exist_cards = {}
    exist_card_single = {}
    written_out_cards = set()
    found_cards = []
    try:
        while True:
            ret, frame = capture.read()
            croped_img = frame[crop_y:-crop_y, crop_x:-crop_x]
            fimg = cv2.flip(croped_img, -1)
            start_time = time.time()
            if not ret:
                # End of video
@@ -500,7 +517,7 @@
                cv2.waitKey(0)
                break
            # Detect all cards from the current frame
            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh,
            det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh,
                                                 out_path=None, display=False, debug=debug)
            if show_graph:
                # If the card was already detected in the previous frame, append 1 to the list
@@ -522,18 +539,50 @@
                    else:
                        exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
                    if len(val) == f_len and sum(val) == 0:
                        gone.append(key)
                        gone.append(key)  # not there anymore
                det_card_map = {}
                gone_single =  []
                for card_name, card_set in det_cards:
                    skey = '%s (%s)' % (card_name, card_set)
                    det_card_map[skey] = (card_name, card_set)
                for key, val in exist_card_single.items():
                    if key in det_card_map:
                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1]
                    else:
                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0]
                    if len(val) == f_len and sum(val) == 0:
                        gone_single.append(key)
                        if key in written_out_cards:
                            written_out_cards.remove(key)
                    if len(val) == f_len and sum(val) == f_len:
                        if key not in written_out_cards and key in det_card_map:
                            written_out_cards.add(key)
                            found_cards.append(det_card_map[key])
                for key in det_card_map:
                    if key not in exist_card_single.keys():
                        exist_card_single[key] = [1]
                for key in gone_single:
                    exist_card_single.pop(key)
                for key in det_cards_list:
                    if key not in exist_cards.keys():
                        exist_cards[key] = [1]
                for key in gone:
                    exist_cards.pop(key)
                # Draw the graph based on the history of detected cards, then concatenate it with the result image
                img_graph = draw_card_graph(exist_cards, card_pool, f_len)
                img_save = np.zeros((height, width, 3), dtype=np.uint8)
                img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
                img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
                for c, card in enumerate(reversed(found_cards[-10:]), 1):
                    cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
            else:
                img_save = img_result
@@ -556,6 +605,12 @@
            vid_writer.release()
        cv2.destroyAllWindows()
        with open('detect.txt', 'w') as of:
            counter = collections.Counter(found_cards)
            for key in counter:
                of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n')
def main(args):
    # Specify paths for all necessary files
@@ -596,9 +651,12 @@
    # If the test file isn't given, use webcam to capture video
    if args.in_path is None:
        capture = cv2.VideoCapture(0)
        capture = cv2.VideoCapture(0, cv2.CAP_V4L)
        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
                     display=args.display, show_graph=args.show_graph, debug=args.debug)
                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200)
        capture.release()
    else:
        # Save the detection result if args.out_path is provided