From 0222895c0697b5158b05d3bbe01f0a88a3ccd576 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 27 Nov 2016 04:08:16 +0000
Subject: [PATCH] :crossed_swords: IS THIS NOT WHY YOU ARE HERE :crossed_swords:

---
 src/connected_layer.c |   37 +++++++++++++++++++++++++++++++++----
 1 files changed, 33 insertions(+), 4 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index f20aa93..b678ed0 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -36,6 +36,10 @@
     l.weights = calloc(outputs*inputs, sizeof(float));
     l.biases = calloc(outputs, sizeof(float));
 
+    l.forward = forward_connected_layer;
+    l.backward = backward_connected_layer;
+    l.update = update_connected_layer;
+
     //float scale = 1./sqrt(inputs);
     float scale = sqrt(2./inputs);
     for(i = 0; i < outputs*inputs; ++i){
@@ -66,6 +70,10 @@
     }
 
 #ifdef GPU
+    l.forward_gpu = forward_connected_layer_gpu;
+    l.backward_gpu = backward_connected_layer_gpu;
+    l.update_gpu = update_connected_layer_gpu;
+
     l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
     l.biases_gpu = cuda_make_array(l.biases, outputs);
 
@@ -92,7 +100,7 @@
     }
 #endif
     l.activation = activation;
-    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
+    fprintf(stderr, "connected                            %4d  ->  %4d\n", inputs, outputs);
     return l;
 }
 
@@ -187,14 +195,36 @@
 {
     int i, j;
     for(i = 0; i < l.outputs; ++i){
-        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
         for(j = 0; j < l.inputs; ++j){
             l.weights[i*l.inputs + j] *= scale;
         }
         l.biases[i] -= l.rolling_mean[i] * scale;
+        l.scales[i] = 1;
+        l.rolling_mean[i] = 0;
+        l.rolling_variance[i] = 1;
     }
 }
 
+
+void statistics_connected_layer(layer l)
+{
+    if(l.batch_normalize){
+        printf("Scales ");
+        print_statistics(l.scales, l.outputs);
+        /*
+        printf("Rolling Mean ");
+        print_statistics(l.rolling_mean, l.outputs);
+        printf("Rolling Variance ");
+        print_statistics(l.rolling_variance, l.outputs);
+        */
+    }
+    printf("Biases ");
+    print_statistics(l.biases, l.outputs);
+    printf("Weights ");
+    print_statistics(l.weights, l.outputs);
+}
+
 #ifdef GPU
 
 void pull_connected_layer(connected_layer l)
@@ -257,13 +287,12 @@
         axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
     }
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
-
 }
 
 void backward_connected_layer_gpu(connected_layer l, network_state state)
 {
     int i;
-    constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1);
+    constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
     gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
     for(i = 0; i < l.batch; ++i){
         axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);

--
Gitblit v1.10.0