From 028696bf15efeca3acb3db8c42a96f7b9e0f55ff Mon Sep 17 00:00:00 2001
From: iovodov <b@ovdv.ru>
Date: Thu, 03 May 2018 13:33:46 +0000
Subject: [PATCH] Output improvements for detector results: When printing detector results, output was done in random order, obfuscating results for interpreting. Now: 1. Text output includes coordinates of rects in (left,right,top,bottom in pixels) along with label and score 2. Text output is sorted by rect lefts to simplify finding appropriate rects on image 3. If several class probs are > thresh for some detection, the most probable is written first and coordinates for others are not repeated 4. Rects are imprinted in image in order by their best class prob, so most probable rects are always on top and not overlayed by less probable ones 5. Most probable label for rect is always written first Also: 6. Message about low GPU memory include required amount
---
README.md | 153 ++++++++++++++++++++++++++++++++------------------
1 files changed, 97 insertions(+), 56 deletions(-)
diff --git a/README.md b/README.md
index 18e5ab3..f0549c9 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,5 @@
-# Yolo-v2 Windows and Linux version
+# Yolo-v3 and Yolo-v2 for Windows and Linux
+### (neural network for object detection)
[](https://circleci.com/gh/AlexeyAB/darknet)
@@ -14,14 +15,17 @@
10. [Using Yolo9000](#using-yolo9000)
11. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
-|  |  https://arxiv.org/abs/1612.08242 |
+
+
+|  |  mAP (AP50) https://pjreddie.com/media/files/papers/YOLOv3.pdf |
|---|---|
-|  |  https://arxiv.org/abs/1612.08242 |
-|---|---|
+* Yolo v3 source chart for the RetinaNet on MS COCO got from Table 1 (e): https://arxiv.org/pdf/1708.02002.pdf
+* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
+* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
-# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
+# "You Only Look Once: Unified, Real-Time Object Detection (versions 2 & 3)"
A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
@@ -42,13 +46,14 @@
* **OpenCV 3.4.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download
* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
- OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
-* **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
+* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
-* `yolo.cfg` (194 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
-* `yolo-voc.cfg` (194 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
-* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
-* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* `yolov3.cfg` (236 MB COCO **Yolo v3**) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
+* `yolov2.cfg` (194 MB COCO Yolo v2) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
+* `yolo-voc.cfg` (194 MB VOC Yolo v2) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - require 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
+* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
Put it near compiled: darknet.exe
@@ -65,6 +70,8 @@
##### Example of usage in cmd-files from `build\darknet\x64\`:
+* `darknet_yolo_v3.cmd` - initialization with 236 MB **Yolo v3** COCO-model yolov3.weights & yolov3.cfg and show detection on the image: dog.jpg
+
* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
* `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi
@@ -75,7 +82,7 @@
##### How to use on the command line:
-On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolo.cfg ./yolo.weights`
+On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
@@ -118,6 +125,7 @@
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x
* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
* `DEBUG=1` to bould debug version of Yolo
* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
@@ -126,9 +134,19 @@
### How to compile on Windows:
-1. If you have **MSVS 2015, CUDA 9.1 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet. **NOTE:** If installing OpenCV, use OpenCV 3.4.0 or earlier. This is a bug in OpenCV 3.4.1 in the C API (see [#500](https://github.com/AlexeyAB/darknet/issues/500)).
+1. If you have **MSVS 2015, CUDA 9.1, cuDNN 7.0 and OpenCV 3.x** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet. **NOTE:** If installing OpenCV, use OpenCV 3.4.0 or earlier. This is a bug in OpenCV 3.4.1 in the C API (see [#500](https://github.com/AlexeyAB/darknet/issues/500)).
1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` (or `opencv_world340.dll` and `opencv_ffmpeg340_64.dll`) in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
+
+ 1.2 Check that there are `bin` and `include` folders in the `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1` if aren't, then copy them to this folder from the path where is CUDA installed
+
+ 1.3. To install CUDNN (speedup neural network), do the following:
+
+ * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn
+
+ * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
+
+ 1.4. If you want to build **without CUDNN** then: open `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and remove this: `CUDNN;`
2. If you have other version of **CUDA (not 9.1)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 9.1" and change it to your CUDA-version, then do step 1
@@ -139,16 +157,9 @@
4.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories: `C:\opencv_2.4.13\opencv\build\include`
4.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
-
-5. If you want to build with CUDNN to speed up then:
-
- * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn
- * copy the `bin` and `include` folders to `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1`
-
- * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
-
- * open `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
+5. If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x:
+ `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: `CUDNN_HALF;`
### How to compile (custom):
@@ -159,7 +170,7 @@
`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
-- add to project all .c & .cu files from `\src`
+- add to project all `.c` & `.cu` files and file `http_stream.cpp` from `\src`
- (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:
`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
@@ -181,7 +192,7 @@
## How to train (Pascal VOC Data):
-1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
+1. Download pre-trained weights for the convolutional layers (154 MB): http://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64`
2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
* http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
@@ -196,38 +207,57 @@
5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
-6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
+6. Set `batch=64` and `subdivisions=8` in the file `yolov3-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/ee38c6e1513fb089b35be4ffa692afd9b3f65747/cfg/yolov3-voc.cfg#L3-L4)
-7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
+7. Start training by using `train_voc.cmd` or by using the command line:
+
+ `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
+
+(**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
If required change pathes in the file `build\darknet\x64\data\voc.data`
More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
+ **Note:** If during training you see `nan` values in some lines then training goes well, but if `nan` are in all lines then training goes wrong.
+
## How to train with multi-GPU:
-1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
-2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
+2. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3`
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
## How to train (to detect your custom objects):
+(to train old Yolo v2 `yolov2-voc.cfg`, `yolov2-tiny-voc.cfg`, `yolo-voc.cfg`, `yolo-voc.2.0.cfg`, ... [click by the link](https://github.com/AlexeyAB/darknet/tree/47c7af1cea5bbdedf1184963355e6418cb8b1b4f#how-to-train-pascal-voc-data))
-1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
+Training Yolo v3:
- * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
- * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
- * change line `classes=20` to your number of objects
- * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)x5, so if `classes=2` then should be `filters=35`. Or if you use `classes=1` then write `filters=30`, **do not write in the cfg-file: filters=(classes + 5)x5**.
+1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and:
+
+ * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3)
+ * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+ * change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers:
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
+ * change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
+ * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
+
+ So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=21`.
- (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`, where `num` is number of anchors)
+ **(Do not write in the cfg-file: filters=(classes + 5)x3)**
+
+ (Generally `filters` depends on the `classes`, `coords` and number of `mask`s, i.e. filters=`(classes + coords + 1)*<number of mask>`, where `mask` is indices of anchors. If `mask` is absence, then filters=`(classes + coords + 1)*num`)
- So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
+ So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolov3.cfg` in such lines in each of **3** [yolo]-layers:
```
[convolutional]
- filters=35
+ filters=21
[region]
classes=2
@@ -247,15 +277,17 @@
4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
-5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+5. You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
+
+It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
Where:
* `<object-class>` - integer number of object from `0` to `(classes-1)`
- * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0
+ * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from (0.0 to 1.0]
* for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
* atention: `<x> <y>` - are center of rectangle (are not top-left corner)
- For example for `img1.jpg` you should create `img1.txt` containing:
+ For example for `img1.jpg` you will be created `img1.txt` containing:
```
1 0.716797 0.395833 0.216406 0.147222
@@ -271,26 +303,30 @@
data/obj/img3.jpg
```
-7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
+7. Download pre-trained weights for the convolutional layers (154 MB): https://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64`
-8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
+8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74`
(file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
- (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2)
+ (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2)
9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
- * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
+ * After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
+
+ (in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations `if(iterations > 1000)`)
* Also you can get result earlier than all 45000 iterations.
+ **Note:** If during training you see `nan` values in some lines then training goes well, but if `nan` are in all lines then training goes wrong.
+
### How to train tiny-yolo (to detect your custom objects):
Do all the same steps as for the full yolo model as described above. With the exception of:
-* Download default weights file for tiny-yolo-voc: http://pjreddie.com/media/files/tiny-yolo-voc.weights
-* Get pre-trained weights tiny-yolo-voc.conv.13 using command: `darknet.exe partial cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.conv.13 13`
-* Make your custom model `tiny-yolo-obj.cfg` based on `tiny-yolo-voc.cfg` instead of `yolo-voc.2.0.cfg`
-* Start training: `darknet.exe detector train data/obj.data tiny-yolo-obj.cfg tiny-yolo-voc.conv.13`
+* Download default weights file for yolov2-tiny-voc: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
+* Get pre-trained weights yolov2-tiny-voc.conv.13 using command: `darknet.exe partial cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights yolov2-tiny-voc.conv.13 13`
+* Make your custom model `yolov2-tiny-obj.cfg` based on `cfg/yolov2-tiny-voc.cfg` instead of `yolov3.cfg`
+* Start training: `darknet.exe detector train data/obj.data yolov2-tiny-obj.cfg yolov2-tiny-voc.conv.13`
For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd
If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights.
@@ -299,7 +335,7 @@
Usually sufficient 2000 iterations for each class(object). But for a more precise definition when you should stop training, use the following manual:
-1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.060730 avg**:
+1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.XXXXXXX avg**:
> Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000, count: 8
> Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000, count: 8
@@ -342,6 +378,7 @@
* **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
+**mAP** is default metric of precision in the PascalVOC competition, **this is the same as AP50** metric in the MS COCO competition.
In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.

@@ -350,7 +387,7 @@
1. To calculate mAP (mean average precision) on PascalVOC-2007-test:
* Download PascalVOC dataset, install Python 3.x and get file `2007_test.txt` as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data
-* Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\voc` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt`
+* Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt`
* Remove symbol `#` from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4
* Then there are 2 ways to get mAP:
1. Using Darknet + Python: run the file `build/darknet/x64/calc_mAP_voc_py.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.9%
@@ -371,30 +408,34 @@
## How to improve object detection:
1. Before training:
- * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244)
+ * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788)
* increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision
- * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
+ * recalculate anchors for your dataset for `width` and `height` from cfg-file:
+ `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
+ then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file
- * desirable that your training dataset include images with objects (without labels) that you do not want to detect - negative samples
+ * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds
+
+ * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files)
* for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file
- * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` in one of the penultimate convolutional layers, for example here: https://github.com/AlexeyAB/darknet/blob/cad4d1618fee74471d335314cb77070fee951a42/cfg/yolo-voc.2.0.cfg#L202
+ * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` in one of the penultimate convolutional layers before the 1-st `[yolo]`-layer, for example here: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L598
2. After training - for detection:
- * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)
+ * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9)
* you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
- * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3)
+ * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
## How to mark bounded boxes of objects and create annotation files:
-Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
+Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
-With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
+With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 & v3
## Using Yolo9000
--
Gitblit v1.10.0