From 028696bf15efeca3acb3db8c42a96f7b9e0f55ff Mon Sep 17 00:00:00 2001
From: iovodov <b@ovdv.ru>
Date: Thu, 03 May 2018 13:33:46 +0000
Subject: [PATCH] Output improvements for detector results: When printing detector results, output was done in random order, obfuscating results for interpreting. Now: 1. Text output includes coordinates of rects in (left,right,top,bottom in pixels) along with label and score 2. Text output is sorted by rect lefts to simplify finding appropriate rects on image 3. If several class probs are > thresh for some detection, the most probable is written first and coordinates for others are not repeated 4. Rects are imprinted in image in order by their best class prob, so most probable rects are always on top and not overlayed by less probable ones 5. Most probable label for rect is always written first Also: 6. Message about low GPU memory include required amount
---
src/blas_kernels.cu | 135 +++++++++++++++++++++++++++++++++++----------
1 files changed, 105 insertions(+), 30 deletions(-)
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 684e66d..1edbbbd 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -23,7 +23,7 @@
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
dim3 dimBlock(BLOCK, 1, 1);
- scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ scale_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
@@ -67,7 +67,7 @@
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
dim3 dimBlock(BLOCK, 1, 1);
- add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ add_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
@@ -145,8 +145,8 @@
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
- x[index] = x[index] - (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps));
- //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
+ x[index] = x[index] - (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
+ //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
}
extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
@@ -155,13 +155,27 @@
check_error(cudaPeekAtLastError());
}
+extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
+{
+ scal_ongpu(n, B1, m, 1);
+ scal_ongpu(n, B2, v, 1);
+ axpy_ongpu(n, -decay*batch, w, 1, d, 1);
+
+ axpy_ongpu(n, (1 - B1), d, 1, m, 1);
+ mul_ongpu(n, d, 1, d, 1);
+ axpy_ongpu(n, (1 - B2), d, 1, v, 1);
+
+ adam_gpu(n, w, m, v, B1, B2, rate, eps, t);
+ fill_ongpu(n, 0, d, 1);
+}
+
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
int f = (index/spatial)%filters;
- x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
+ x[index] = (x[index] - mean[f])/(sqrtf(variance[f]) + .000001f);
}
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -170,7 +184,7 @@
if (index >= N) return;
int f = (index/spatial)%filters;
- delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+ delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
}
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -192,7 +206,7 @@
variance_delta[i] += delta[index]*(x[index] - mean[i]);
}
}
- variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
+ variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.));
}
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -223,13 +237,14 @@
local[id] += (i+id < spatial) ? delta[index] : 0;
}
}
+ __syncthreads();
if(id == 0){
mean_delta[filter] = 0;
for(i = 0; i < threads; ++i){
mean_delta[filter] += local[i];
}
- mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
+ mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f));
}
}
@@ -251,13 +266,14 @@
local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0;
}
}
+ __syncthreads();
if(id == 0){
variance_delta[filter] = 0;
for(i = 0; i < threads; ++i){
variance_delta[filter] += local[i];
}
- variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
+ variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.));
}
}
@@ -274,7 +290,7 @@
mean_delta[i] += delta[index];
}
}
- mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
+ mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f));
}
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -297,7 +313,7 @@
__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
{
- float scale = 1./(batch * spatial);
+ float scale = 1.F/(batch * spatial);
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
int j,k;
@@ -313,7 +329,7 @@
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
- float scale = 1./(batch * spatial - 1);
+ float scale = 1.F/(batch * spatial - 1);
int j,k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
@@ -321,7 +337,7 @@
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
- variance[i] += pow((x[index] - mean[i]), 2);
+ variance[i] += powf((x[index] - mean[i]), 2);
}
}
variance[i] *= scale;
@@ -368,7 +384,7 @@
__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
- if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
+ if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA);
}
__global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
@@ -425,7 +441,7 @@
extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
size_t N = batch*filters*spatial;
- normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
+ normalize_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, x, mean, variance, batch, filters, spatial);
check_error(cudaPeekAtLastError());
}
@@ -446,6 +462,7 @@
local[id] += (i+id < spatial) ? x[index] : 0;
}
}
+ __syncthreads();
if(id == 0){
mean[filter] = 0;
@@ -471,9 +488,10 @@
for(i = 0; i < spatial; i += threads){
int index = j*spatial*filters + filter*spatial + i + id;
- local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
+ local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0;
}
}
+ __syncthreads();
if(id == 0){
variance[filter] = 0;
@@ -486,13 +504,13 @@
extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
{
- fast_mean_kernel<<<filters, BLOCK>>>(x, batch, filters, spatial, mean);
+ fast_mean_kernel<<<filters, BLOCK, 0, get_cuda_stream()>>>(x, batch, filters, spatial, mean);
check_error(cudaPeekAtLastError());
}
extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
- fast_variance_kernel<<<filters, BLOCK>>>(x, mean, batch, filters, spatial, variance);
+ fast_variance_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance);
check_error(cudaPeekAtLastError());
}
@@ -516,13 +534,13 @@
extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
{
- pow_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX, Y, INCY);
+ pow_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX, Y, INCY);
check_error(cudaPeekAtLastError());
}
extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
- axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
+ axpy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
check_error(cudaPeekAtLastError());
}
@@ -539,20 +557,44 @@
extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
- copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
+ copy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void flatten_kernel(int N, float *x, int spatial, int layers, int batch, int forward, float *out)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i >= N) return;
+ int in_s = i%spatial;
+ i = i/spatial;
+ int in_c = i%layers;
+ i = i/layers;
+ int b = i;
+
+ int i1 = b*layers*spatial + in_c*spatial + in_s;
+ int i2 = b*layers*spatial + in_s*layers + in_c;
+
+ if (forward) out[i2] = x[i1];
+ else out[i1] = x[i2];
+}
+
+extern "C" void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out)
+{
+ int size = spatial*batch*layers;
+ flatten_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, spatial, layers, batch, forward, out);
check_error(cudaPeekAtLastError());
}
extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
int size = w*h*c*batch;
- reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out);
+ reorg_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, w, h, c, batch, stride, forward, out);
check_error(cudaPeekAtLastError());
}
extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
{
- mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
+ mask_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask);
check_error(cudaPeekAtLastError());
}
@@ -571,7 +613,7 @@
extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
{
- scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+ scal_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
@@ -583,7 +625,7 @@
extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
{
- fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+ fill_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
@@ -618,7 +660,7 @@
if(sample < 1) sample = 1;
int size = batch * minw * minh * minc;
- shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
+ shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
check_error(cudaPeekAtLastError());
}
@@ -718,11 +760,12 @@
largest = (val>largest) ? val : largest;
}
for(i = 0; i < n; ++i){
- sum += exp(input[i]/temp-largest/temp);
+ float e = exp(input[i]/temp - largest/temp);
+ sum += e;
+ output[i] = e;
}
- sum = (sum != 0) ? largest/temp+log(sum) : largest-100;
for(i = 0; i < n; ++i){
- output[i] = exp(input[i]/temp-sum);
+ output[i] /= sum;
}
}
@@ -737,6 +780,38 @@
{
int inputs = n;
int batch = groups;
- softmax_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, offset, batch, input, temp, output);
+ softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
check_error(cudaPeekAtLastError());
}
+
+
+__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+ size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= N) return;
+ int out_index = i;
+ int out_w = i % (w*stride);
+ i = i / (w*stride);
+ int out_h = i % (h*stride);
+ i = i / (h*stride);
+ int out_c = i%c;
+ i = i / c;
+ int b = i%batch;
+
+ int in_w = out_w / stride;
+ int in_h = out_h / stride;
+ int in_c = out_c;
+
+ int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w;
+
+
+ if (forward) out[out_index] += scale * x[in_index];
+ else atomicAdd(x + in_index, scale * out[out_index]);
+}
+
+extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+ size_t size = w*h*c*batch*stride*stride;
+ upsample_kernel << <cuda_gridsize(size), BLOCK >> >(size, in, w, h, c, batch, stride, forward, scale, out);
+ check_error(cudaPeekAtLastError());
+}
\ No newline at end of file
--
Gitblit v1.10.0