From 02bb33c64514ef36d48388e2265b034c49bb31c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:47:23 +0000
Subject: [PATCH] stuff
---
src/convolutional_layer.c | 71 ++++++++++++++++++++++++++++++++++-
1 files changed, 69 insertions(+), 2 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 871a84e..159951d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,7 +41,65 @@
return float_to_image(w,h,c,l.delta);
}
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ int i,b,f;
+ for(f = 0; f < n; ++f){
+ float sum = 0;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; ++i){
+ int index = i + size*(f + n*b);
+ sum += delta[index] * x_norm[index];
+ }
+ }
+ scale_updates[f] += sum;
+ }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ mean_delta[i] = 0;
+ for (j = 0; j < batch; ++j) {
+ for (k = 0; k < spatial; ++k) {
+ int index = j*filters*spatial + i*spatial + k;
+ mean_delta[i] += delta[index];
+ }
+ }
+ mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+ }
+}
+void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ variance_delta[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance_delta[i] += delta[index]*(x[index] - mean[i]);
+ }
+ }
+ variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+ }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ int f, j, k;
+ for(j = 0; j < batch; ++j){
+ for(f = 0; f < filters; ++f){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + f*spatial + k;
+ delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+ }
+ }
+ }
+}
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
{
int i;
convolutional_layer l = {0};
@@ -51,6 +109,7 @@
l.w = w;
l.c = c;
l.n = n;
+ l.binary = binary;
l.batch = batch;
l.stride = stride;
l.size = size;
@@ -78,6 +137,10 @@
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
+ if(binary){
+ l.binary_filters = calloc(c*n*size*size, sizeof(float));
+ }
+
if(batch_normalize){
l.scales = calloc(n, sizeof(float));
l.scale_updates = calloc(n, sizeof(float));
@@ -106,6 +169,10 @@
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+ if(binary){
+ l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+ }
+
if(batch_normalize){
l.mean_gpu = cuda_make_array(l.mean, n);
l.variance_gpu = cuda_make_array(l.variance, n);
@@ -141,7 +208,7 @@
void test_convolutional_layer()
{
- convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
+ convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
l.batch_normalize = 1;
float data[] = {1,1,1,1,1,
1,1,1,1,1,
--
Gitblit v1.10.0