From 02bb33c64514ef36d48388e2265b034c49bb31c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:47:23 +0000
Subject: [PATCH] stuff

---
 src/convolutional_layer.c |  112 +++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 95 insertions(+), 17 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index b9fd3c9..159951d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,7 +41,65 @@
     return float_to_image(w,h,c,l.delta);
 }
 
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    int i,b,f;
+    for(f = 0; f < n; ++f){
+        float sum = 0;
+        for(b = 0; b < batch; ++b){
+            for(i = 0; i < size; ++i){
+                int index = i + size*(f + n*b);
+                sum += delta[index] * x_norm[index];
+            }
+        }
+        scale_updates[f] += sum;
+    }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        mean_delta[i] = 0;
+        for (j = 0; j < batch; ++j) {
+            for (k = 0; k < spatial; ++k) {
+                int index = j*filters*spatial + i*spatial + k;
+                mean_delta[i] += delta[index];
+            }
+        }
+        mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+    }
+}
+void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        variance_delta[i] = 0;
+        for(j = 0; j < batch; ++j){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + i*spatial + k;
+                variance_delta[i] += delta[index]*(x[index] - mean[i]);
+            }
+        }
+        variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+    }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+    int f, j, k;
+    for(j = 0; j < batch; ++j){
+        for(f = 0; f < filters; ++f){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + f*spatial + k;
+                delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+            }
+        }
+    }
+}
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
 {
     int i;
     convolutional_layer l = {0};
@@ -51,6 +109,7 @@
     l.w = w;
     l.c = c;
     l.n = n;
+    l.binary = binary;
     l.batch = batch;
     l.stride = stride;
     l.size = size;
@@ -65,7 +124,7 @@
 
     // float scale = 1./sqrt(size*size*c);
     float scale = sqrt(2./(size*size*c));
-    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
+    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     l.out_h = out_h;
@@ -78,6 +137,10 @@
     l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
     l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
 
+    if(binary){
+        l.binary_filters = calloc(c*n*size*size, sizeof(float));
+    }
+
     if(batch_normalize){
         l.scales = calloc(n, sizeof(float));
         l.scale_updates = calloc(n, sizeof(float));
@@ -86,9 +149,8 @@
         }
 
         l.mean = calloc(n, sizeof(float));
-        l.spatial_mean = calloc(n*l.batch, sizeof(float));
-
         l.variance = calloc(n, sizeof(float));
+
         l.rolling_mean = calloc(n, sizeof(float));
         l.rolling_variance = calloc(n, sizeof(float));
     }
@@ -107,6 +169,10 @@
     l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
     l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
 
+    if(binary){
+        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+    }
+
     if(batch_normalize){
         l.mean_gpu = cuda_make_array(l.mean, n);
         l.variance_gpu = cuda_make_array(l.variance, n);
@@ -114,12 +180,6 @@
         l.rolling_mean_gpu = cuda_make_array(l.mean, n);
         l.rolling_variance_gpu = cuda_make_array(l.variance, n);
 
-        l.spatial_mean_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
-        l.spatial_variance_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
-
-        l.spatial_mean_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
-        l.spatial_variance_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
-
         l.mean_delta_gpu = cuda_make_array(l.mean, n);
         l.variance_delta_gpu = cuda_make_array(l.variance, n);
 
@@ -148,7 +208,7 @@
 
 void test_convolutional_layer()
 {
-    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
     l.batch_normalize = 1;
     float data[] = {1,1,1,1,1,
         1,1,1,1,1,
@@ -201,13 +261,25 @@
 #endif
 }
 
-void bias_output(float *output, float *biases, int batch, int n, int size)
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
     for(b = 0; b < batch; ++b){
         for(i = 0; i < n; ++i){
             for(j = 0; j < size; ++j){
-                output[(b*n + i)*size + j] = biases[i];
+                output[(b*n + i)*size + j] += biases[i];
+            }
+        }
+    }
+}
+
+void scale_bias(float *output, float *scales, int batch, int n, int size)
+{
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
             }
         }
     }
@@ -229,7 +301,7 @@
     int out_w = convolutional_out_width(l);
     int i;
 
-    bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
 
     int m = l.n;
     int k = l.size*l.size*l.c;
@@ -248,10 +320,16 @@
     }
 
     if(l.batch_normalize){
-        mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);   
-        variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);   
-        normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);   
+        if(state.train){
+            mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);   
+            variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);   
+            normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);   
+        } else {
+            normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
+        }
+        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
     }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
 
     activate_array(l.output, m*n*l.batch, l.activation);
 }

--
Gitblit v1.10.0