From 02bb33c64514ef36d48388e2265b034c49bb31c4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:47:23 +0000
Subject: [PATCH] stuff
---
src/convolutional_layer.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++++-----
1 files changed, 192 insertions(+), 21 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index c3a3718..159951d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,7 +41,65 @@
return float_to_image(w,h,c,l.delta);
}
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ int i,b,f;
+ for(f = 0; f < n; ++f){
+ float sum = 0;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; ++i){
+ int index = i + size*(f + n*b);
+ sum += delta[index] * x_norm[index];
+ }
+ }
+ scale_updates[f] += sum;
+ }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ mean_delta[i] = 0;
+ for (j = 0; j < batch; ++j) {
+ for (k = 0; k < spatial; ++k) {
+ int index = j*filters*spatial + i*spatial + k;
+ mean_delta[i] += delta[index];
+ }
+ }
+ mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+ }
+}
+void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+ int i,j,k;
+ for(i = 0; i < filters; ++i){
+ variance_delta[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance_delta[i] += delta[index]*(x[index] - mean[i]);
+ }
+ }
+ variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+ }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ int f, j, k;
+ for(j = 0; j < batch; ++j){
+ for(f = 0; f < filters; ++f){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + f*spatial + k;
+ delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+ }
+ }
+ }
+}
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
{
int i;
convolutional_layer l = {0};
@@ -51,22 +109,22 @@
l.w = w;
l.c = c;
l.n = n;
+ l.binary = binary;
l.batch = batch;
l.stride = stride;
l.size = size;
l.pad = pad;
+ l.batch_normalize = batch_normalize;
l.filters = calloc(c*n*size*size, sizeof(float));
l.filter_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
- //float scale = 1./sqrt(size*size*c);
+
+ // float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
- for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
- for(i = 0; i < n; ++i){
- l.biases[i] = scale;
- }
+ for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
@@ -79,17 +137,56 @@
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
- #ifdef GPU
+ if(binary){
+ l.binary_filters = calloc(c*n*size*size, sizeof(float));
+ }
+
+ if(batch_normalize){
+ l.scales = calloc(n, sizeof(float));
+ l.scale_updates = calloc(n, sizeof(float));
+ for(i = 0; i < n; ++i){
+ l.scales[i] = 1;
+ }
+
+ l.mean = calloc(n, sizeof(float));
+ l.variance = calloc(n, sizeof(float));
+
+ l.rolling_mean = calloc(n, sizeof(float));
+ l.rolling_variance = calloc(n, sizeof(float));
+ }
+
+#ifdef GPU
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+ l.scales_gpu = cuda_make_array(l.scales, n);
+ l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
- #endif
+
+ if(binary){
+ l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+ }
+
+ if(batch_normalize){
+ l.mean_gpu = cuda_make_array(l.mean, n);
+ l.variance_gpu = cuda_make_array(l.variance, n);
+
+ l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+ l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+ l.mean_delta_gpu = cuda_make_array(l.mean, n);
+ l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+ l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+ l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+ }
+#endif
l.activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -97,6 +194,42 @@
return l;
}
+void denormalize_convolutional_layer(convolutional_layer l)
+{
+ int i, j;
+ for(i = 0; i < l.n; ++i){
+ float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+ for(j = 0; j < l.c*l.size*l.size; ++j){
+ l.filters[i*l.c*l.size*l.size + j] *= scale;
+ }
+ l.biases[i] -= l.rolling_mean[i] * scale;
+ }
+}
+
+void test_convolutional_layer()
+{
+ convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
+ l.batch_normalize = 1;
+ float data[] = {1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 2,2,2,2,2,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3,
+ 3,3,3,3,3};
+ network_state state = {0};
+ state.input = data;
+ forward_convolutional_layer(l, state);
+}
+
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
l->w = w;
@@ -111,30 +244,42 @@
l->inputs = l->w * l->h * l->c;
l->col_image = realloc(l->col_image,
- out_h*out_w*l->size*l->size*l->c*sizeof(float));
+ out_h*out_w*l->size*l->size*l->c*sizeof(float));
l->output = realloc(l->output,
- l->batch*out_h * out_w * l->n*sizeof(float));
+ l->batch*out_h * out_w * l->n*sizeof(float));
l->delta = realloc(l->delta,
- l->batch*out_h * out_w * l->n*sizeof(float));
+ l->batch*out_h * out_w * l->n*sizeof(float));
- #ifdef GPU
+#ifdef GPU
cuda_free(l->col_image_gpu);
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
- l->col_image_gpu = cuda_make_array(0, out_h*out_w*l->size*l->size*l->c);
- l->delta_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
- l->output_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
- #endif
+ l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
+ l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
+ l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+#endif
}
-void bias_output(float *output, float *biases, int batch, int n, int size)
+void add_bias(float *output, float *biases, int batch, int n, int size)
{
int i,j,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
for(j = 0; j < size; ++j){
- output[(b*n + i)*size + j] = biases[i];
+ output[(b*n + i)*size + j] += biases[i];
+ }
+ }
+ }
+}
+
+void scale_bias(float *output, float *scales, int batch, int n, int size)
+{
+ int i,j,b;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < n; ++i){
+ for(j = 0; j < size; ++j){
+ output[(b*n + i)*size + j] *= scales[i];
}
}
}
@@ -150,14 +295,13 @@
}
}
-
void forward_convolutional_layer(const convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
int i;
- bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
+ fill_cpu(l.outputs*l.batch, 0, l.output, 1);
int m = l.n;
int k = l.size*l.size*l.c;
@@ -169,11 +313,24 @@
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
- l.size, l.stride, l.pad, b);
+ l.size, l.stride, l.pad, b);
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
c += n*m;
state.input += l.c*l.h*l.w;
}
+
+ if(l.batch_normalize){
+ if(state.train){
+ mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
+ variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
+ normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
+ } else {
+ normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
+ }
+ scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
+ }
+ add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
activate_array(l.output, m*n*l.batch, l.activation);
}
@@ -242,12 +399,26 @@
}
}
+void rescale_filters(convolutional_layer l, float scale, float trans)
+{
+ int i;
+ for(i = 0; i < l.n; ++i){
+ image im = get_convolutional_filter(l, i);
+ if (im.c == 3) {
+ scale_image(im, scale);
+ float sum = sum_array(im.data, im.w*im.h*im.c);
+ l.biases[i] += sum*trans;
+ }
+ }
+}
+
image *get_filters(convolutional_layer l)
{
image *filters = calloc(l.n, sizeof(image));
int i;
for(i = 0; i < l.n; ++i){
filters[i] = copy_image(get_convolutional_filter(l, i));
+ //normalize_image(filters[i]);
}
return filters;
}
--
Gitblit v1.10.0