From 0305fb4d99cf1efc7d4aa4d2ee2d65d54500d437 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 26 Nov 2015 19:48:01 +0000
Subject: [PATCH] Some changes

---
 src/network.c |   55 ++++++++++++++++++++++++++++++++++++++++---------------
 1 files changed, 40 insertions(+), 15 deletions(-)

diff --git a/src/network.c b/src/network.c
index d823c15..d9585c4 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,10 +8,10 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
-#include "region_layer.h"
 #include "normalization_layer.h"
 #include "maxpool_layer.h"
 #include "avgpool_layer.h"
@@ -26,18 +26,41 @@
     return batch_num;
 }
 
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
+    #ifdef GPU
+        if(gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
 float get_current_rate(network net)
 {
     int batch_num = get_current_batch(net);
+    int i;
+    float rate;
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
         case STEP:
-            return net.learning_rate * pow(net.gamma, batch_num/net.step);
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+            }
+            return rate;
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
             return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
         default:
             fprintf(stderr, "Policy is weird!\n");
             return net.learning_rate;
@@ -49,6 +72,8 @@
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case LOCAL:
+            return "local";
         case DECONVOLUTIONAL:
             return "deconvolutional";
         case CONNECTED:
@@ -61,8 +86,6 @@
             return "softmax";
         case DETECTION:
             return "detection";
-        case REGION:
-            return "region";
         case DROPOUT:
             return "dropout";
         case CROP:
@@ -104,12 +127,12 @@
             forward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer(l, state);
-        } else if(l.type == REGION){
-            forward_region_layer(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer(l, state);
         } else if(l.type == CROP){
@@ -144,6 +167,8 @@
             update_deconvolutional_layer(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
             update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
@@ -169,10 +194,6 @@
             sum += net.layers[i].cost[0];
             ++count;
         }
-        if(net.layers[i].type == REGION){
-            sum += net.layers[i].cost[0];
-            ++count;
-        }
     }
     return sum/count;
 }
@@ -213,12 +234,12 @@
             backward_dropout_layer(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer(l, state);
-        } else if(l.type == REGION){
-            backward_region_layer(l, state);
         } else if(l.type == SOFTMAX){
             if(i != 0) backward_softmax_layer(l, state);
         } else if(l.type == CONNECTED){
             backward_connected_layer(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer(l, state);
         } else if(l.type == COST){
             backward_cost_layer(l, state);
         } else if(l.type == ROUTE){
@@ -319,6 +340,7 @@
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
     net->h = h;
+    int inputs = 0;
     //fprintf(stderr, "Resizing to %d x %d...", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
@@ -332,9 +354,12 @@
             break;
         }else if(l.type == NORMALIZATION){
             resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
         }else{
             error("Cannot resize this type of layer");
         }
+        inputs = l.outputs;
         net->layers[i] = l;
         w = l.out_w;
         h = l.out_h;
@@ -525,12 +550,12 @@
     return acc;
 }
 
-float *network_accuracies(network net, data d)
+float *network_accuracies(network net, data d, int n)
 {
     static float acc[2];
     matrix guess = network_predict_data(net, d);
-    acc[0] = matrix_topk_accuracy(d.y, guess,1);
-    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
     free_matrix(guess);
     return acc;
 }

--
Gitblit v1.10.0