From 033e934ce82826c73d851098baf7ce4b1a27c89a Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 21 Feb 2018 16:14:01 +0000
Subject: [PATCH] If there is excessive GPU-RAM consumption by CUDNN then then do not use Workspace

---
 src/convolutional_layer.c |   69 +++++++++++++++++++++++++---------
 1 files changed, 51 insertions(+), 18 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 37211ab..801270a 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -8,6 +8,10 @@
 #include <stdio.h>
 #include <time.h>
 
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")  
+#endif
+
 #ifdef AI2
 #include "xnor_layer.h"
 #endif
@@ -133,7 +137,7 @@
 
 #ifdef GPU
 #ifdef CUDNN
-void cudnn_convolutional_setup(layer *l)
+void cudnn_convolutional_setup(layer *l, int cudnn_preference)
 {
     cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
     cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
@@ -142,13 +146,26 @@
     cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
     cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
     cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
-    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
-    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+#if(CUDNN_MAJOR >= 6)
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn 6.0
+#else
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);	// cudnn 5.1
+#endif
+	int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
+	int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
+	int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
+	if (cudnn_preference == cudnn_smallest) {
+		forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
+		backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
+		backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+	}
+
+	cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
             l->srcTensorDesc,
             l->weightDesc,
             l->convDesc,
             l->dstTensorDesc,
-            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
+			forward_algo,
             0,
             &l->fw_algo);
     cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
@@ -156,7 +173,7 @@
             l->ddstTensorDesc,
             l->convDesc,
             l->dsrcTensorDesc,
-            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
+			backward_algo,
             0,
             &l->bd_algo);
     cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
@@ -164,7 +181,7 @@
             l->ddstTensorDesc,
             l->convDesc,
             l->dweightDesc,
-            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
+			backward_filter,
             0,
             &l->bf_algo);
 }
@@ -298,7 +315,7 @@
         cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
         cudnnCreateFilterDescriptor(&l.dweightDesc);
         cudnnCreateConvolutionDescriptor(&l.convDesc);
-        cudnn_convolutional_setup(&l);
+        cudnn_convolutional_setup(&l, cudnn_fastest);
 #endif
     }
 #endif
@@ -351,6 +368,8 @@
 
 void resize_convolutional_layer(convolutional_layer *l, int w, int h)
 {
+	int old_w = l->w;
+	int old_h = l->h;
     l->w = w;
     l->h = h;
     int out_w = convolutional_out_width(*l);
@@ -370,24 +389,38 @@
     }
 
 #ifdef GPU
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
+	if (old_w < w || old_h < h) {
+		cuda_free(l->delta_gpu);
+		cuda_free(l->output_gpu);
 
-    l->delta_gpu =  cuda_make_array(l->delta,  l->batch*l->outputs);
-    l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+		l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+		l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
 
-    if(l->batch_normalize){
-        cuda_free(l->x_gpu);
-        cuda_free(l->x_norm_gpu);
+		if (l->batch_normalize) {
+			cuda_free(l->x_gpu);
+			cuda_free(l->x_norm_gpu);
 
-        l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-        l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-    }
+			l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+			l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+		}
+	}
 #ifdef CUDNN
-    cudnn_convolutional_setup(l);
+    cudnn_convolutional_setup(l, cudnn_fastest);
 #endif
 #endif
     l->workspace_size = get_workspace_size(*l);
+
+#ifdef CUDNN
+	// check for excessive memory consumption 
+	size_t free_byte;
+	size_t total_byte;
+	check_error(cudaMemGetInfo(&free_byte, &total_byte));
+	if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+		printf(" used slow CUDNN algo without Workspace! \n");
+		cudnn_convolutional_setup(l, cudnn_smallest);
+		l->workspace_size = get_workspace_size(*l);
+	}
+#endif
 }
 
 void add_bias(float *output, float *biases, int batch, int n, int size)

--
Gitblit v1.10.0