From 033e934ce82826c73d851098baf7ce4b1a27c89a Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 21 Feb 2018 16:14:01 +0000
Subject: [PATCH] If there is excessive GPU-RAM consumption by CUDNN then then do not use Workspace

---
 src/detector.c |  343 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 342 insertions(+), 1 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index d79fbcc..c851b38 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -82,6 +82,7 @@
     args.classes = classes;
     args.jitter = jitter;
     args.num_boxes = l.max_boxes;
+	args.small_object = l.small_object;
     args.d = &buffer;
     args.type = DETECTION_DATA;
 	args.threads = 4;// 8;
@@ -314,6 +315,8 @@
     float thresh = .005;
     float nms = .45;
 
+	int detection_count = 0;
+
     int nthreads = 4;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
@@ -355,6 +358,15 @@
             int h = val[t].h;
             get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
             if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+			int x, y;
+			for (x = 0; x < (l.w*l.h*l.n); ++x) {
+				for (y = 0; y < classes; ++y) 
+				{
+					if (probs[x][y]) ++detection_count;
+				}
+			}
+
             if (coco){
                 print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
             } else if (imagenet){
@@ -375,6 +387,7 @@
         fprintf(fp, "\n]\n");
         fclose(fp);
     }
+	printf("\n detection_count = %d \n", detection_count);
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
@@ -408,6 +421,8 @@
     float iou_thresh = .5;
     float nms = .4;
 
+	int detection_count = 0, truth_count = 0;
+
     int total = 0;
     int correct = 0;
     int proposals = 0;
@@ -431,6 +446,7 @@
 
         int num_labels = 0;
         box_label *truth = read_boxes(labelpath, &num_labels);
+		truth_count += num_labels;
         for(k = 0; k < l.w*l.h*l.n; ++k){
             if(probs[k][0] > thresh){
                 ++proposals;
@@ -457,6 +473,329 @@
         free_image(orig);
         free_image(sized);
     }
+	printf("\n truth_count = %d \n", truth_count);
+}
+
+typedef struct {
+	box b;
+	float p;
+	int class_id;
+	int image_index;
+	int truth_flag;
+	int unique_truth_index;
+} box_prob;
+
+int detections_comparator(const void *pa, const void *pb)
+{
+	box_prob a = *(box_prob *)pa;
+	box_prob b = *(box_prob *)pb;
+	float diff = a.p - b.p;
+	if (diff < 0) return 1;
+	else if (diff > 0) return -1;
+	return 0;
+}
+
+void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile)
+{
+	int j;
+	list *options = read_data_cfg(datacfg);
+	char *valid_images = option_find_str(options, "valid", "data/train.txt");
+	char *difficult_valid_images = option_find_str(options, "difficult", NULL);
+	char *name_list = option_find_str(options, "names", "data/names.list");
+	char **names = get_labels(name_list);
+	char *mapf = option_find_str(options, "map", 0);
+	int *map = 0;
+	if (mapf) map = read_map(mapf);
+
+	network net = parse_network_cfg_custom(cfgfile, 1);
+	if (weightfile) {
+		load_weights(&net, weightfile);
+	}
+	set_batch_network(&net, 1);
+	fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+	srand(time(0));
+
+	list *plist = get_paths(valid_images);
+	char **paths = (char **)list_to_array(plist);
+
+	char **paths_dif = NULL;
+	if (difficult_valid_images) {
+		list *plist_dif = get_paths(difficult_valid_images);
+		paths_dif = (char **)list_to_array(plist_dif);
+	}
+	
+
+	layer l = net.layers[net.n - 1];
+	int classes = l.classes;
+
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+	int m = plist->size;
+	int i = 0;
+	int t;
+
+	const float thresh = .005;
+	const float nms = .45;
+	const float iou_thresh = 0.5;
+
+	int nthreads = 4;
+	image *val = calloc(nthreads, sizeof(image));
+	image *val_resized = calloc(nthreads, sizeof(image));
+	image *buf = calloc(nthreads, sizeof(image));
+	image *buf_resized = calloc(nthreads, sizeof(image));
+	pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+	load_args args = { 0 };
+	args.w = net.w;
+	args.h = net.h;
+	args.type = IMAGE_DATA;
+
+	const float thresh_calc_avg_iou = 0.24;
+	float avg_iou = 0;
+	int tp_for_thresh = 0;
+	int fp_for_thresh = 0;
+
+	box_prob *detections = calloc(1, sizeof(box_prob));
+	int detections_count = 0;
+	int unique_truth_count = 0;
+
+	int *truth_classes_count = calloc(classes, sizeof(int));
+
+	for (t = 0; t < nthreads; ++t) {
+		args.path = paths[i + t];
+		args.im = &buf[t];
+		args.resized = &buf_resized[t];
+		thr[t] = load_data_in_thread(args);
+	}
+	time_t start = time(0);
+	for (i = nthreads; i < m + nthreads; i += nthreads) {
+		fprintf(stderr, "%d\n", i);
+		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+			pthread_join(thr[t], 0);
+			val[t] = buf[t];
+			val_resized[t] = buf_resized[t];
+		}
+		for (t = 0; t < nthreads && i + t < m; ++t) {
+			args.path = paths[i + t];
+			args.im = &buf[t];
+			args.resized = &buf_resized[t];
+			thr[t] = load_data_in_thread(args);
+		}
+		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+			const int image_index = i + t - nthreads;
+			char *path = paths[image_index];
+			char *id = basecfg(path);
+			float *X = val_resized[t].data;
+			network_predict(net, X);
+			get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+			if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+			char labelpath[4096];
+			find_replace(path, "images", "labels", labelpath);
+			find_replace(labelpath, "JPEGImages", "labels", labelpath);
+			find_replace(labelpath, ".jpg", ".txt", labelpath);
+			find_replace(labelpath, ".JPEG", ".txt", labelpath);
+			find_replace(labelpath, ".png", ".txt", labelpath);
+			int num_labels = 0;
+			box_label *truth = read_boxes(labelpath, &num_labels);
+			int i, j;
+			for (j = 0; j < num_labels; ++j) {
+				truth_classes_count[truth[j].id]++;
+			}
+
+			// difficult
+			box_label *truth_dif = NULL;
+			int num_labels_dif = 0;
+			if (paths_dif)
+			{
+				char *path_dif = paths_dif[image_index];
+
+				char labelpath_dif[4096];
+				find_replace(path_dif, "images", "labels", labelpath_dif);
+				find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif);
+				find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif);
+				find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif);
+				find_replace(labelpath_dif, ".png", ".txt", labelpath_dif);				
+				truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
+			}
+
+			for (i = 0; i < (l.w*l.h*l.n); ++i) {
+
+				int class_id;
+				for (class_id = 0; class_id < classes; ++class_id) {
+					float prob = probs[i][class_id];
+					if (prob > 0) {
+						detections_count++;
+						detections = realloc(detections, detections_count * sizeof(box_prob));
+						detections[detections_count - 1].b = boxes[i];
+						detections[detections_count - 1].p = prob;
+						detections[detections_count - 1].image_index = image_index;
+						detections[detections_count - 1].class_id = class_id;
+						detections[detections_count - 1].truth_flag = 0;
+						detections[detections_count - 1].unique_truth_index = -1;
+
+						int truth_index = -1;
+						float max_iou = 0;
+						for (j = 0; j < num_labels; ++j)
+						{
+							box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+							//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", 
+							//	box_iou(boxes[i], t), prob, class_id, truth[j].id);
+							float current_iou = box_iou(boxes[i], t);
+							if (current_iou > iou_thresh && class_id == truth[j].id) {
+								if (current_iou > max_iou) {
+									max_iou = current_iou;
+									truth_index = unique_truth_count + j;
+								}
+							}
+						}
+
+						// best IoU
+						if (truth_index > -1) {
+							detections[detections_count - 1].truth_flag = 1;
+							detections[detections_count - 1].unique_truth_index = truth_index;
+						}
+						else {
+							// if object is difficult then remove detection
+							for (j = 0; j < num_labels_dif; ++j) {
+								box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
+								float current_iou = box_iou(boxes[i], t);
+								if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
+									--detections_count;
+									break;
+								}
+							}
+						}
+
+						// calc avg IoU, true-positives, false-positives for required Threshold
+						if (prob > thresh_calc_avg_iou) {
+							if (truth_index > -1) {
+								avg_iou += max_iou;
+								++tp_for_thresh;
+							}
+							else
+								fp_for_thresh++;
+						}
+					}
+				}
+			}
+			
+			unique_truth_count += num_labels;
+
+			free(id);
+			free_image(val[t]);
+			free_image(val_resized[t]);
+		}
+	}
+
+	avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
+
+	
+	// SORT(detections)
+	qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
+	
+	typedef struct {
+		double precision;
+		double recall;
+		int tp, fp, fn;
+	} pr_t;
+
+	// for PR-curve
+	pr_t **pr = calloc(classes, sizeof(pr_t*));
+	for (i = 0; i < classes; ++i) {
+		pr[i] = calloc(detections_count, sizeof(pr_t));
+	}
+	printf("detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
+
+
+	int *truth_flags = calloc(unique_truth_count, sizeof(int));
+
+	int rank;
+	for (rank = 0; rank < detections_count; ++rank) {
+		if(rank % 100 == 0)
+			printf(" rank = %d of ranks = %d \r", rank, detections_count);
+
+		if (rank > 0) {
+			int class_id;
+			for (class_id = 0; class_id < classes; ++class_id) {
+				pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
+				pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
+			}
+		}
+
+		box_prob d = detections[rank];
+		// if (detected && isn't detected before)
+		if (d.truth_flag == 1) {
+			if (truth_flags[d.unique_truth_index] == 0) 
+			{
+				truth_flags[d.unique_truth_index] = 1;
+				pr[d.class_id][rank].tp++;	// true-positive
+			}
+		}
+		else {
+			pr[d.class_id][rank].fp++;	// false-positive
+		}
+
+		for (i = 0; i < classes; ++i) 
+		{
+			const int tp = pr[i][rank].tp;
+			const int fp = pr[i][rank].fp;
+			const int fn = truth_classes_count[i] - tp;	// false-negative = objects - true-positive
+			pr[i][rank].fn = fn;
+
+			if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
+			else pr[i][rank].precision = 0;
+
+			if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
+			else pr[i][rank].recall = 0;
+		}
+	}
+
+	free(truth_flags);
+	
+	
+	double mean_average_precision = 0;
+
+	for (i = 0; i < classes; ++i) {
+		double avg_precision = 0;
+		int point;
+		for (point = 0; point < 11; ++point) {
+			double cur_recall = point * 0.1;
+			double cur_precision = 0;
+			for (rank = 0; rank < detections_count; ++rank)
+			{
+				if (pr[i][rank].recall >= cur_recall) {	// > or >=
+					if (pr[i][rank].precision > cur_precision) {
+						cur_precision = pr[i][rank].precision;
+					}
+				}
+			}
+			//printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision);
+
+			avg_precision += cur_precision;
+		}
+		avg_precision = avg_precision / 11;
+		printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
+		mean_average_precision += avg_precision;
+	}
+	
+	printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", 
+		thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
+
+	mean_average_precision = mean_average_precision / classes;
+	printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
+
+
+	for (i = 0; i < classes; ++i) {
+		free(pr[i]);
+	}
+	free(pr);
+	free(detections);
+	free(truth_classes_count);
+
+	fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
 void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
@@ -520,6 +859,7 @@
 
 void run_detector(int argc, char **argv)
 {
+	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
 	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
     char *prefix = find_char_arg(argc, argv, "-prefix", 0);
     float thresh = find_float_arg(argc, argv, "-thresh", .24);
@@ -564,6 +904,7 @@
     else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
     else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
+	else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "demo")) {
         list *options = read_data_cfg(datacfg);
         int classes = option_find_int(options, "classes", 20);
@@ -571,6 +912,6 @@
         char **names = get_labels(name_list);
 		if(filename)
 			if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
-        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename);
+        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, http_stream_port);
     }
 }

--
Gitblit v1.10.0