From 043289426b2d08d925fc1c980b0d2a01e2360e93 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sat, 04 Aug 2018 00:11:10 +0000
Subject: [PATCH] max pool layer is fixed

---
 src/batchnorm_layer.c |  175 ++++++++++++++++++++++------------------------------------
 1 files changed, 67 insertions(+), 108 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 0151582..3fa129d 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -53,10 +53,10 @@
     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
 #ifdef CUDNN
-	cudnnCreateTensorDescriptor(&layer.normTensorDesc);
-	cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
-	cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
-	cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+    cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+    cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+    cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+    cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
 #endif
 #endif
     return layer;
@@ -176,15 +176,33 @@
     cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
     cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
 }
-/*
+
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-    if(l.type == CONNECTED){
-        l.out_c = l.outputs;
-        l.out_h = l.out_w = 1;
-    }
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+    copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
     if (state.train) {
+#ifdef CUDNN
+        float one = 1;
+        float zero = 0;
+        cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+            CUDNN_BATCHNORM_SPATIAL,
+            &one,
+            &zero,
+            l.normDstTensorDesc,
+            l.x_gpu,                // input
+            l.normDstTensorDesc,
+            l.output_gpu,            // output
+            l.normTensorDesc,
+            l.scales_gpu,
+            l.biases_gpu,
+            .01,
+            l.rolling_mean_gpu,        // output (should be FP32)
+            l.rolling_variance_gpu,    // output (should be FP32)
+            .00001,
+            l.mean_gpu,            // output (should be FP32)
+            l.variance_gpu);    // output (should be FP32)
+#else
         fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
         fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
 
@@ -196,15 +214,50 @@
         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
         normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
         copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-    } else {
+
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+#endif
+    }
+    else {
         normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
     }
 
-    scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
 }
 
-void backward_batchnorm_layer_gpu(const layer l, network_state state)
+void backward_batchnorm_layer_gpu(layer l, network_state state)
 {
+    if (!state.train) {
+        l.mean_gpu = l.rolling_mean_gpu;
+        l.variance_gpu = l.rolling_variance_gpu;
+    }
+#ifdef CUDNN
+    float one = 1;
+    float zero = 0;
+    cudnnBatchNormalizationBackward(cudnn_handle(),
+        CUDNN_BATCHNORM_SPATIAL,
+        &one,
+        &zero,
+        &one,
+        &one,
+        l.normDstTensorDesc,
+        l.x_gpu,                // input
+        l.normDstTensorDesc,
+        l.delta_gpu,            // input
+        l.normDstTensorDesc,
+        l.x_norm_gpu,            // output
+        l.normTensorDesc,
+        l.scales_gpu,            // output (should be FP32)
+        l.scale_updates_gpu,    // output (should be FP32)
+        l.bias_updates_gpu,        // output (should be FP32)
+        .00001,
+        l.mean_gpu,                // input (should be FP32)
+        l.variance_gpu);        // input (should be FP32)
+    copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+#else
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
     backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
 
     scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
@@ -212,101 +265,7 @@
     fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
     fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
     normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-}
 #endif
-*/
-
-
-void forward_batchnorm_layer_gpu(layer l, network_state state)
-{
-	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-	copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-	if (state.train) {
-#ifdef CUDNN
-		float one = 1;
-		float zero = 0;
-		cudnnBatchNormalizationForwardTraining(cudnn_handle(),
-			CUDNN_BATCHNORM_SPATIAL,
-			&one,
-			&zero,
-			l.dstTensorDesc,
-			l.x_gpu,
-			l.dstTensorDesc,
-			l.output_gpu,
-			l.normTensorDesc,
-			l.scales_gpu,
-			l.biases_gpu,
-			.01,
-			l.rolling_mean_gpu,
-			l.rolling_variance_gpu,
-			.00001,
-			l.mean_gpu,
-			l.variance_gpu);
-#else
-		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
-
-		scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
-		axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-		scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
-		axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
-
-		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-		normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-
-		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-#endif
-	}
-	else {
-		normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-	}
-
-}
-
-void backward_batchnorm_layer_gpu(layer l, network_state state)
-{
-	if (!state.train) {
-		l.mean_gpu = l.rolling_mean_gpu;
-		l.variance_gpu = l.rolling_variance_gpu;
-	}
-#ifdef CUDNN
-	float one = 1;
-	float zero = 0;
-	cudnnBatchNormalizationBackward(cudnn_handle(),
-		CUDNN_BATCHNORM_SPATIAL,
-		&one,
-		&zero,
-		&one,
-		&one,
-		l.dstTensorDesc,
-		l.x_gpu,
-		l.dstTensorDesc,
-		l.delta_gpu,
-		l.dstTensorDesc,
-		l.x_norm_gpu,
-		l.normTensorDesc,
-		l.scales_gpu,
-		l.scale_updates_gpu,
-		l.bias_updates_gpu,
-		.00001,
-		l.mean_gpu,
-		l.variance_gpu);
-	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
-#else
-	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-	backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
-
-	scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-
-	fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
-	fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
-	normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-#endif
-	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+    if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
 }
 #endif
\ No newline at end of file

--
Gitblit v1.10.0