From 08b757a0bf76efe8c76b453063a1bb19315bcaa6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 14 Jan 2015 20:18:57 +0000
Subject: [PATCH] Stable, needs to be way faster

---
 src/connected_layer.c |  254 ++++++++++++++++++++++++++++++--------------------
 1 files changed, 152 insertions(+), 102 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 16a39be..e29df77 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -7,11 +7,15 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
-    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
     layer->inputs = inputs;
     layer->outputs = outputs;
     layer->batch=batch;
@@ -20,65 +24,82 @@
     layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
-    layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
-    layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
-    layer->weights = calloc(inputs*outputs, sizeof(float));
-    float scale = 1./inputs;
-    for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = scale*(rand_uniform());
-
     layer->bias_updates = calloc(outputs, sizeof(float));
-    layer->bias_adapt = calloc(outputs, sizeof(float));
-    layer->bias_momentum = calloc(outputs, sizeof(float));
-    layer->biases = calloc(outputs, sizeof(float));
-    for(i = 0; i < outputs; ++i)
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = 1;
 
+    layer->weight_prev = calloc(inputs*outputs, sizeof(float));
+    layer->bias_prev = calloc(outputs, sizeof(float));
+
+    layer->weights = calloc(inputs*outputs, sizeof(float));
+    layer->biases = calloc(outputs, sizeof(float));
+
+
+    float scale = 1./sqrt(inputs);
+    //scale = .01;
+    for(i = 0; i < inputs*outputs; ++i){
+        layer->weights[i] = scale*rand_normal();
+    }
+
+    for(i = 0; i < outputs; ++i){
+        layer->biases[i] = scale;
+    }
+
+#ifdef GPU
+    layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
+    layer->biases_cl = cl_make_array(layer->biases, outputs);
+
+    layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
+    layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
+
+    layer->output_cl = cl_make_array(layer->output, outputs*batch);
+    layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
+#endif
     layer->activation = activation;
+    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     return layer;
 }
 
-/*
-void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
+void secret_update_connected_layer(connected_layer *layer)
 {
-    int i;
-    for(i = 0; i < layer.outputs; ++i){
-        float delta = layer.bias_updates[i];
-        layer.bias_adapt[i] += delta*delta;
-        layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-    }
-    for(i = 0; i < layer.outputs*layer.inputs; ++i){
-        float delta = layer.weight_updates[i];
-        layer.weight_adapt[i] += delta*delta;
-        layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
-        layer.weights[i] += layer.weight_momentum[i];
-    }
-    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
-    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
-}
-*/
+    int n = layer->outputs*layer->inputs;
+    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
+    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
+                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
+    float cos = dot/mag;
+    if(cos > .3) layer->learning_rate *= 1.1;
+    else if (cos < -.3) layer-> learning_rate /= 1.1;
 
-void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
+    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
+    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
+    scal_cpu(n, 0, layer->weight_updates, 1);
+
+    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
+    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
+    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
+
+    //printf("rate:   %f\n", layer->learning_rate);
+
+    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
+
+    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
+    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
+}
+
+void update_connected_layer(connected_layer layer)
 {
-    int i;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-    }
-    for(i = 0; i < layer.outputs*layer.inputs; ++i){
-        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
-        layer.weights[i] += layer.weight_momentum[i];
-    }
-    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
-    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
+    axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
+
+    axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
+    axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
+    scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
 }
 
 void forward_connected_layer(connected_layer layer, float *input)
 {
     int i;
-    memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
+    for(i = 0; i < layer.batch; ++i){
+        copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
+    }
     int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
@@ -86,18 +107,15 @@
     float *b = layer.weights;
     float *c = layer.output;
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    for(i = 0; i < layer.outputs*layer.batch; ++i){
-        layer.output[i] = activate(layer.output[i], layer.activation);
-    }
-    //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
+    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
 }
 
-void learn_connected_layer(connected_layer layer, float *input)
+void backward_connected_layer(connected_layer layer, float *input, float *delta)
 {
     int i;
-    for(i = 0; i < layer.outputs*layer.batch; ++i){
-        layer.delta[i] *= gradient(layer.output[i], layer.activation);
-        layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
+    gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
+    for(i = 0; i < layer.batch; ++i){
+        axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
     }
     int m = layer.inputs;
     int k = layer.batch;
@@ -105,55 +123,87 @@
     float *a = input;
     float *b = layer.delta;
     float *c = layer.weight_updates;
-    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    m = layer.batch;
+    k = layer.outputs;
+    n = layer.inputs;
+
+    a = layer.delta;
+    b = layer.weights;
+    c = delta;
+
+    if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
 
-void backward_connected_layer(connected_layer layer, float *input, float *delta)
+#ifdef GPU
+
+void pull_connected_layer(connected_layer layer)
 {
-    memset(delta, 0, layer.inputs*sizeof(float));
-
-    int m = layer.inputs;
-    int k = layer.outputs;
-    int n = layer.batch;
-
-    float *a = layer.weights;
-    float *b = layer.delta;
-    float *c = delta;
-
-    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
+    cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
 }
-/*
-   void forward_connected_layer(connected_layer layer, float *input)
-   {
-   int i, j;
-   for(i = 0; i < layer.outputs; ++i){
-   layer.output[i] = layer.biases[i];
-   for(j = 0; j < layer.inputs; ++j){
-   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
-   }
-   layer.output[i] = activate(layer.output[i], layer.activation);
-   }
-   }
-   void learn_connected_layer(connected_layer layer, float *input)
-   {
-   int i, j;
-   for(i = 0; i < layer.outputs; ++i){
-   layer.delta[i] *= gradient(layer.output[i], layer.activation);
-   layer.bias_updates[i] += layer.delta[i];
-   for(j = 0; j < layer.inputs; ++j){
-   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
-   }
-   }
-   }
-   void backward_connected_layer(connected_layer layer, float *input, float *delta)
-   {
-   int i, j;
 
-   for(j = 0; j < layer.inputs; ++j){
-   delta[j] = 0;
-   for(i = 0; i < layer.outputs; ++i){
-   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
-   }
-   }
-   }
- */
+void push_connected_layer(connected_layer layer)
+{
+    cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
+    cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
+}
+
+void update_connected_layer_gpu(connected_layer layer)
+{
+    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
+    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
+
+    axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
+    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
+    //pull_connected_layer(layer);
+}
+
+void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
+{
+    int i;
+    for(i = 0; i < layer.batch; ++i){
+        copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
+    }
+    int m = layer.batch;
+    int k = layer.inputs;
+    int n = layer.outputs;
+    cl_mem a = input;
+    cl_mem b = layer.weights_cl;
+    cl_mem c = layer.output_cl;
+    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
+}
+
+void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
+{
+    int i;
+    gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
+    for(i = 0; i < layer.batch; ++i){
+        axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
+    }
+    int m = layer.inputs;
+    int k = layer.batch;
+    int n = layer.outputs;
+    cl_mem a = input;
+    cl_mem b = layer.delta_cl;
+    cl_mem c = layer.weight_updates_cl;
+    gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    m = layer.batch;
+    k = layer.outputs;
+    n = layer.inputs;
+
+    a = layer.delta_cl;
+    b = layer.weights_cl;
+    c = delta;
+
+    if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
+}
+#endif

--
Gitblit v1.10.0