From 08b757a0bf76efe8c76b453063a1bb19315bcaa6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 14 Jan 2015 20:18:57 +0000
Subject: [PATCH] Stable, needs to be way faster

---
 src/connected_layer.c |   68 +++++++++++++++++++++++++--------
 1 files changed, 51 insertions(+), 17 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 05d4a03..e29df77 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -24,22 +24,26 @@
     layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
-    //layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
-    layer->weights = calloc(inputs*outputs, sizeof(float));
-    float scale = 1./inputs;
-    scale = .01;
-    for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = scale*2*(rand_uniform()-.5);
-
     layer->bias_updates = calloc(outputs, sizeof(float));
-    //layer->bias_adapt = calloc(outputs, sizeof(float));
+
+    layer->weight_prev = calloc(inputs*outputs, sizeof(float));
+    layer->bias_prev = calloc(outputs, sizeof(float));
+
+    layer->weights = calloc(inputs*outputs, sizeof(float));
     layer->biases = calloc(outputs, sizeof(float));
-    for(i = 0; i < outputs; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = 1;
+
+
+    float scale = 1./sqrt(inputs);
+    //scale = .01;
+    for(i = 0; i < inputs*outputs; ++i){
+        layer->weights[i] = scale*rand_normal();
     }
 
-    #ifdef GPU
+    for(i = 0; i < outputs; ++i){
+        layer->biases[i] = scale;
+    }
+
+#ifdef GPU
     layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
     layer->biases_cl = cl_make_array(layer->biases, outputs);
 
@@ -48,18 +52,44 @@
 
     layer->output_cl = cl_make_array(layer->output, outputs*batch);
     layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
-    #endif
+#endif
     layer->activation = activation;
     fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     return layer;
 }
 
+void secret_update_connected_layer(connected_layer *layer)
+{
+    int n = layer->outputs*layer->inputs;
+    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
+    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
+                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
+    float cos = dot/mag;
+    if(cos > .3) layer->learning_rate *= 1.1;
+    else if (cos < -.3) layer-> learning_rate /= 1.1;
+
+    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
+    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
+    scal_cpu(n, 0, layer->weight_updates, 1);
+
+    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
+    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
+    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
+
+    //printf("rate:   %f\n", layer->learning_rate);
+
+    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
+
+    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
+    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
+}
+
 void update_connected_layer(connected_layer layer)
 {
     axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
     scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
 
-    scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
+    axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
     axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
     scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
 }
@@ -112,12 +142,16 @@
 {
     cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
     cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
 }
 
 void push_connected_layer(connected_layer layer)
 {
     cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
     cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
 }
 
 void update_connected_layer_gpu(connected_layer layer)
@@ -125,10 +159,10 @@
     axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
     scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
 
-    scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1);
     axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
     scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
-    pull_connected_layer(layer);
+    //pull_connected_layer(layer);
 }
 
 void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
@@ -172,4 +206,4 @@
 
     if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
-    #endif
+#endif

--
Gitblit v1.10.0