From 08b757a0bf76efe8c76b453063a1bb19315bcaa6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 14 Jan 2015 20:18:57 +0000
Subject: [PATCH] Stable, needs to be way faster
---
src/network.c | 64 +++++++++++++++++++++++++++++++
1 files changed, 63 insertions(+), 1 deletions(-)
diff --git a/src/network.c b/src/network.c
index 829bb6e..641d782 100644
--- a/src/network.c
+++ b/src/network.c
@@ -15,6 +15,35 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
+char *get_layer_string(LAYER_TYPE a)
+{
+ switch(a){
+ case CONVOLUTIONAL:
+ return "convolutional";
+ case CONNECTED:
+ return "connected";
+ case MAXPOOL:
+ return "maxpool";
+ case SOFTMAX:
+ return "softmax";
+ case NORMALIZATION:
+ return "normalization";
+ case DROPOUT:
+ return "dropout";
+ case FREEWEIGHT:
+ return "freeweight";
+ case CROP:
+ return "crop";
+ case COST:
+ return "cost";
+ default:
+ break;
+ }
+ return "none";
+}
+
+
+
network make_network(int n, int batch)
{
network net;
@@ -74,6 +103,7 @@
if(!train) continue;
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer(layer, input);
+ input = layer.output;
}
else if(net.types[i] == FREEWEIGHT){
if(!train) continue;
@@ -102,6 +132,7 @@
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
+ //secret_update_connected_layer((connected_layer *)net.layers[i]);
update_connected_layer(layer);
}
}
@@ -119,7 +150,8 @@
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == DROPOUT){
- return get_network_output_layer(net, i-1);
+ dropout_layer layer = *(dropout_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == FREEWEIGHT){
return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
@@ -153,6 +185,7 @@
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == DROPOUT){
+ if(i == 0) return 0;
return get_network_delta_layer(net, i-1);
} else if(net.types[i] == FREEWEIGHT){
return get_network_delta_layer(net, i-1);
@@ -368,6 +401,10 @@
cost_layer *layer = (cost_layer *)net->layers[i];
layer->batch = b;
}
+ else if(net->types[i] == CROP){
+ crop_layer *layer = (crop_layer *)net->layers[i];
+ layer->batch = b;
+ }
}
}
@@ -645,6 +682,31 @@
}
}
+void compare_networks(network n1, network n2, data test)
+{
+ matrix g1 = network_predict_data(n1, test);
+ matrix g2 = network_predict_data(n2, test);
+ int i;
+ int a,b,c,d;
+ a = b = c = d = 0;
+ for(i = 0; i < g1.rows; ++i){
+ int truth = max_index(test.y.vals[i], test.y.cols);
+ int p1 = max_index(g1.vals[i], g1.cols);
+ int p2 = max_index(g2.vals[i], g2.cols);
+ if(p1 == truth){
+ if(p2 == truth) ++d;
+ else ++c;
+ }else{
+ if(p2 == truth) ++b;
+ else ++a;
+ }
+ }
+ printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+ float num = pow((abs(b - c) - 1.), 2.);
+ float den = b + c;
+ printf("%f\n", num/den);
+}
+
float network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
--
Gitblit v1.10.0