From 08c7cf9c88befd845f00c00d85e40a9eead4b1b3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 19 Jun 2016 21:28:15 +0000
Subject: [PATCH] no mean on input binarization

---
 src/cost_layer.c |   55 ++++++++++++++++++++++++++++++++++++++++---------------
 1 files changed, 40 insertions(+), 15 deletions(-)

diff --git a/src/cost_layer.c b/src/cost_layer.c
index d1ae6e5..fdba777 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -11,7 +11,8 @@
 {
     if (strcmp(s, "sse")==0) return SSE;
     if (strcmp(s, "masked")==0) return MASKED;
-    fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
+    if (strcmp(s, "smooth")==0) return SMOOTH;
+    fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
     return SSE;
 }
 
@@ -22,28 +23,47 @@
             return "sse";
         case MASKED:
             return "masked";
+        case SMOOTH:
+            return "smooth";
     }
     return "sse";
 }
 
-cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type)
+cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
 {
     fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
     cost_layer l = {0};
     l.type = COST;
 
+    l.scale = scale;
     l.batch = batch;
     l.inputs = inputs;
     l.outputs = inputs;
     l.cost_type = cost_type;
     l.delta = calloc(inputs*batch, sizeof(float));
-    l.output = calloc(1, sizeof(float));
+    l.output = calloc(inputs*batch, sizeof(float));
+    l.cost = calloc(1, sizeof(float));
     #ifdef GPU
-    l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
+    l.delta_gpu = cuda_make_array(l.output, inputs*batch);
+    l.output_gpu = cuda_make_array(l.delta, inputs*batch);
     #endif
     return l;
 }
 
+void resize_cost_layer(cost_layer *l, int inputs)
+{
+    l->inputs = inputs;
+    l->outputs = inputs;
+    l->delta = realloc(l->delta, inputs*l->batch*sizeof(float));
+    l->output = realloc(l->output, inputs*l->batch*sizeof(float));
+#ifdef GPU
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+    l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
+    l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
+#endif
+}
+
 void forward_cost_layer(cost_layer l, network_state state)
 {
     if (!state.truth) return;
@@ -53,15 +73,17 @@
             if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
         }
     }
-    copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
-    axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
-    *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
-    //printf("cost: %f\n", *l.output);
+    if(l.cost_type == SMOOTH){
+        smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
+    } else {
+        l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
+    }
+    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
 }
 
 void backward_cost_layer(const cost_layer l, network_state state)
 {
-    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+    axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
@@ -82,17 +104,20 @@
     if (l.cost_type == MASKED) {
         mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
     }
-    
-    copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
-    axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
 
-    cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
-    *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
+    if(l.cost_type == SMOOTH){
+        smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
+    } else {
+        l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
+    }
+
+    cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
+    l.cost[0] = sum_array(l.output, l.batch*l.inputs);
 }
 
 void backward_cost_layer_gpu(const cost_layer l, network_state state)
 {
-    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
+    axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
 }
 #endif
 

--
Gitblit v1.10.0