From 0b4b2753bf3a02553c05d9ba2d31eba262e5c29e Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Tue, 31 Jan 2017 10:29:55 +0000
Subject: [PATCH] Update Readme.md

---
 README.md |   13 ++++++++++---
 1 files changed, 10 insertions(+), 3 deletions(-)

diff --git a/README.md b/README.md
index 7b7abdb..3fd4d10 100644
--- a/README.md
+++ b/README.md
@@ -1,8 +1,15 @@
+# Yolo-Windows v2
+
+1. [How to use](#how-to-use)
+2. [How to compile](#how-to-compile)
+3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+5. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+
 |  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
 |---|---|
 
 
-# Yolo-Windows v2
 # "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
 A yolo windows version (for object detection)
 
@@ -76,7 +83,7 @@
 
 ### How to compile:
 
-1. If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths: `C:\opencv_2.4.9\opencv\build\include` & `C:\opencv_2.4.9\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
+1. If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths: `C:\opencv_2.4.9\opencv\build\include` & `C:\opencv_2.4.9\opencv\build\x64\vc12\lib` or `vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
 
 2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
 
@@ -192,7 +199,7 @@
 
 4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
 
-5. Create `.txt`-file for each `.jpg`-image-file - with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
 
   Where: 
   * `<object-class>` - integer number of object from `0` to `(classes-1)`

--
Gitblit v1.10.0