From 0cd2379e2ccbad07bad3f88f8dc564776605802d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 14 Nov 2015 20:34:17 +0000
Subject: [PATCH] some changes
---
src/network.c | 9
src/yolo.c | 26 -
Makefile | 2
src/network_kernels.cu | 7
src/data.c | 4
src/nightmare.c | 7
src/yolo_kernels.cu | 115 +++++-
src/local_layer.c | 275 ++++++++++++++++++
src/coco_kernels.cu | 109 +++++++
src/coco.c | 8
src/local_kernels.cu | 226 +++++++++++++++
src/parser.c | 50 +++
src/local_layer.h | 31 ++
src/layer.h | 3
14 files changed, 817 insertions(+), 55 deletions(-)
diff --git a/Makefile b/Makefile
index 44a193f..1b6aa80 100644
--- a/Makefile
+++ b/Makefile
@@ -34,7 +34,7 @@
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o
endif
diff --git a/src/coco.c b/src/coco.c
index aadf09d..cef6ade 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -15,7 +15,7 @@
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
-void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
+void draw_coco(image im, int num, float thresh, box *boxes, float **probs)
{
int classes = 80;
int i;
@@ -38,7 +38,6 @@
draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
- show_image(im, label);
}
void train_coco(char *cfgfile, char *weightfile)
@@ -215,7 +214,7 @@
int i=0;
int t;
- float thresh = .001;
+ float thresh = .01;
int nms = 1;
float iou_thresh = .5;
@@ -393,7 +392,8 @@
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
- draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+ draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs);
+ show_image(im, "predictions");
show_image(sized, "resized");
free_image(im);
diff --git a/src/coco_kernels.cu b/src/coco_kernels.cu
new file mode 100644
index 0000000..9c201c0
--- /dev/null
+++ b/src/coco_kernels.cu
@@ -0,0 +1,109 @@
+extern "C" {
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "image.h"
+}
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+extern "C" image ipl_to_image(IplImage* src);
+extern "C" void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
+extern "C" void draw_coco(image im, int num, float thresh, box *boxes, float **probs);
+
+static float **probs;
+static box *boxes;
+static network net;
+static image in ;
+static image in_s ;
+static image det ;
+static image det_s;
+static image disp ;
+static cv::VideoCapture cap(0);
+
+void *fetch_in_thread(void *ptr)
+{
+ cv::Mat frame_m;
+ cap >> frame_m;
+ IplImage frame = frame_m;
+ in = ipl_to_image(&frame);
+ rgbgr_image(in);
+ in_s = resize_image(in, net.w, net.h);
+ return 0;
+}
+
+void *detect_in_thread(void *ptr)
+{
+ float nms = .4;
+ float thresh = .2;
+
+ detection_layer l = net.layers[net.n-1];
+ float *X = det_s.data;
+ float *predictions = network_predict(net, X);
+ free_image(det_s);
+ convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nObjects:\n\n");
+ draw_coco(det, l.side*l.side*l.n, thresh, boxes, probs);
+ return 0;
+}
+
+extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh)
+{
+ printf("YOLO demo\n");
+ net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+
+ srand(2222222);
+
+ if(!cap.isOpened()) error("Couldn't connect to webcam.\n");
+
+ detection_layer l = net.layers[net.n-1];
+ int j;
+
+ boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+ probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+ for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+
+ pthread_t fetch_thread;
+ pthread_t detect_thread;
+
+ fetch_in_thread(0);
+ det = in;
+ det_s = in_s;
+
+ fetch_in_thread(0);
+ detect_in_thread(0);
+ disp = det;
+ det = in;
+ det_s = in_s;
+
+ while(1){
+ if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
+ if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
+ show_image(disp, "YOLO");
+ free_image(disp);
+ cvWaitKey(1);
+ pthread_join(fetch_thread, 0);
+ pthread_join(detect_thread, 0);
+
+ disp = det;
+ det = in;
+ det_s = in_s;
+ }
+}
+#else
+extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh){
+ fprintf(stderr, "YOLO-COCO demo needs OpenCV for webcam images.\n");
+}
+#endif
+
diff --git a/src/data.c b/src/data.c
index df15dc5..9b84c5a 100644
--- a/src/data.c
+++ b/src/data.c
@@ -574,9 +574,7 @@
pthread_t thread;
struct load_args *ptr = calloc(1, sizeof(struct load_args));
*ptr = args;
- if(pthread_create(&thread, 0, load_thread, ptr)) {
- error("Thread creation failed");
- }
+ if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
return thread;
}
diff --git a/src/layer.h b/src/layer.h
index 0137c8e..2a74437 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -15,7 +15,8 @@
ROUTE,
COST,
NORMALIZATION,
- AVGPOOL
+ AVGPOOL,
+ LOCAL
} LAYER_TYPE;
typedef enum{
diff --git a/src/local_kernels.cu b/src/local_kernels.cu
new file mode 100644
index 0000000..8717416
--- /dev/null
+++ b/src/local_kernels.cu
@@ -0,0 +1,226 @@
+extern "C" {
+#include "local_layer.h"
+#include "gemm.h"
+#include "blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "utils.h"
+#include "cuda.h"
+}
+
+__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
+{
+ int offset = blockIdx.x * blockDim.x + threadIdx.x;
+ int filter = blockIdx.y;
+ int batch = blockIdx.z;
+
+ if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
+}
+
+void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+ dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+ dim3 dimBlock(BLOCK, 1, 1);
+
+ scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ __shared__ float part[BLOCK];
+ int i,b;
+ int filter = blockIdx.x;
+ int p = threadIdx.x;
+ float sum = 0;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; i += BLOCK){
+ int index = p + i + size*(filter + n*b);
+ sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
+ }
+ }
+ part[p] = sum;
+ __syncthreads();
+ if (p == 0) {
+ for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
+ }
+}
+
+void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+ backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
+{
+ int offset = blockIdx.x * blockDim.x + threadIdx.x;
+ int filter = blockIdx.y;
+ int batch = blockIdx.z;
+
+ if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
+}
+
+void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+ dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+ dim3 dimBlock(BLOCK, 1, 1);
+
+ add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
+{
+ __shared__ float part[BLOCK];
+ int i,b;
+ int filter = blockIdx.x;
+ int p = threadIdx.x;
+ float sum = 0;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; i += BLOCK){
+ int index = p + i + size*(filter + n*b);
+ sum += (p+i < size) ? delta[index] : 0;
+ }
+ }
+ part[p] = sum;
+ __syncthreads();
+ if (p == 0) {
+ for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
+ }
+}
+
+void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
+{
+ backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
+ check_error(cudaPeekAtLastError());
+}
+
+void forward_local_layer_gpu(local_layer l, network_state state)
+{
+ int i;
+ int m = l.n;
+ int k = l.size*l.size*l.c;
+ int n = local_out_height(l)*
+ local_out_width(l);
+
+ fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+ for(i = 0; i < l.batch; ++i){
+ im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
+ float * a = l.filters_gpu;
+ float * b = l.col_image_gpu;
+ float * c = l.output_gpu;
+ gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
+ }
+
+ if(l.batch_normalize){
+ if(state.train){
+ fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);
+ fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
+
+ scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
+ axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+ scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
+ axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+
+ // cuda_pull_array(l.variance_gpu, l.mean, l.n);
+ // printf("%f\n", l.mean[0]);
+
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+ normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+ } else {
+ normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+ }
+
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+ }
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
+
+ activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
+}
+
+void backward_local_layer_gpu(local_layer l, network_state state)
+{
+ int i;
+ int m = l.n;
+ int n = l.size*l.size*l.c;
+ int k = local_out_height(l)*
+ local_out_width(l);
+
+ gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
+
+ backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
+
+ if(l.batch_normalize){
+ backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu);
+
+ scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+
+ fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
+ fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
+ normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float * a = l.delta_gpu;
+ float * b = l.col_image_gpu;
+ float * c = l.filter_updates_gpu;
+
+ im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
+ gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
+
+ if(state.delta){
+ float * a = l.filters_gpu;
+ float * b = l.delta_gpu;
+ float * c = l.col_image_gpu;
+
+ gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
+
+ col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
+ }
+ }
+}
+
+void pull_local_layer(local_layer layer)
+{
+ cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+ cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
+ cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+ cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+ if (layer.batch_normalize){
+ cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
+ cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+ cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+ }
+}
+
+void push_local_layer(local_layer layer)
+{
+ cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+ cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
+ cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+ cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+ if (layer.batch_normalize){
+ cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
+ cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+ cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+ }
+}
+
+void update_local_layer_gpu(local_layer layer, int batch, float learning_rate, float momentum, float decay)
+{
+ int size = layer.size*layer.size*layer.c*layer.n;
+
+ axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+ scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
+
+ axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
+ scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+
+ axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+ axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+ scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
+}
+
+
diff --git a/src/local_layer.c b/src/local_layer.c
new file mode 100644
index 0000000..c0f52cb
--- /dev/null
+++ b/src/local_layer.c
@@ -0,0 +1,275 @@
+#include "local_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int local_out_height(local_layer l)
+{
+ int h = l.h;
+ if (!l.pad) h -= l.size;
+ else h -= 1;
+ return h/l.stride + 1;
+}
+
+int local_out_width(local_layer l)
+{
+ int w = l.w;
+ if (!l.pad) w -= l.size;
+ else w -= 1;
+ return w/l.stride + 1;
+}
+
+local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+{
+ int i;
+ local_layer l = {0};
+ l.type = LOCAL;
+
+ l.h = h;
+ l.w = w;
+ l.c = c;
+ l.n = n;
+ l.batch = batch;
+ l.stride = stride;
+ l.size = size;
+ l.pad = pad;
+
+ int out_h = local_out_height(l);
+ int out_w = local_out_width(l);
+ int locations = out_h*out_w;
+ l.out_h = out_h;
+ l.out_w = out_w;
+ l.out_c = n;
+ l.outputs = l.out_h * l.out_w * l.out_c;
+ l.inputs = l.w * l.h * l.c;
+
+ l.filters = calloc(c*n*size*size*locations, sizeof(float));
+ l.filter_updates = calloc(c*n*size*size*locations, sizeof(float));
+
+ l.biases = calloc(l.outputs, sizeof(float));
+ l.bias_updates = calloc(l.outputs, sizeof(float));
+
+ // float scale = 1./sqrt(size*size*c);
+ float scale = sqrt(2./(size*size*c));
+ for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
+
+ l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
+ l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
+ l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
+
+#ifdef GPU
+ l.filters_gpu = cuda_make_array(l.filters, c*n*size*size*locations);
+ l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size*locations);
+
+ l.biases_gpu = cuda_make_array(l.biases, l.outputs);
+ l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
+
+ l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
+ l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+ l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+#endif
+ l.activation = activation;
+
+ fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+ return l;
+}
+
+void forward_local_layer(const local_layer l, network_state state)
+{
+ int out_h = local_out_height(l);
+ int out_w = local_out_width(l);
+ int i, j;
+ int locations = out_h * out_w;
+
+ for(i = 0; i < l.batch; ++i){
+ copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float *input = state.input + i*l.w*l.h*l.c;
+ im2col_cpu(input, l.c, l.h, l.w,
+ l.size, l.stride, l.pad, l.col_image);
+ float *output = l.output + i*l.outputs;
+ for(j = 0; j < locations; ++j){
+ float *a = l.filters + j*l.size*l.size*l.c*l.n;
+ float *b = l.col_image + j;
+ float *c = output + j;
+
+ int m = l.n;
+ int n = 1;
+ int k = l.size*l.size*l.c;
+
+ gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+ }
+ }
+ activate_array(l.output, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer(local_layer l, network_state state)
+{
+ int i, j;
+ int locations = l.out_w*l.out_h;
+
+ gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
+
+ for(i = 0; i < l.batch; ++i){
+ axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float *input = state.input + i*l.w*l.h*l.c;
+ im2col_cpu(input, l.c, l.h, l.w,
+ l.size, l.stride, l.pad, l.col_image);
+
+ for(j = 0; j < locations; ++j){
+ float *a = l.delta + i*l.outputs + j;
+ float *b = l.col_image + j;
+ float *c = l.filter_updates + j*l.size*l.size*l.c*l.n;
+ int m = l.n;
+ int n = l.size*l.size*l.c;
+ int k = 1;
+
+ gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+ }
+
+ if(state.delta){
+ for(j = 0; j < locations; ++j){
+ float *a = l.filters + j*l.size*l.size*l.c*l.n;
+ float *b = l.delta + i*l.outputs + j;
+ float *c = l.col_image + j;
+
+ int m = l.size*l.size*l.c;
+ int n = 1;
+ int k = l.n;
+
+ gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+ }
+
+ col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+ }
+ }
+}
+
+void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
+{
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+ scal_cpu(l.outputs, momentum, l.bias_updates, 1);
+
+ axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
+ axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
+ scal_cpu(size, momentum, l.filter_updates, 1);
+}
+
+#ifdef GPU
+
+void forward_local_layer_gpu(const local_layer l, network_state state)
+{
+ int out_h = local_out_height(l);
+ int out_w = local_out_width(l);
+ int i, j;
+ int locations = out_h * out_w;
+
+ for(i = 0; i < l.batch; ++i){
+ copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float *input = state.input + i*l.w*l.h*l.c;
+ im2col_ongpu(input, l.c, l.h, l.w,
+ l.size, l.stride, l.pad, l.col_image_gpu);
+ float *output = l.output_gpu + i*l.outputs;
+ for(j = 0; j < locations; ++j){
+ float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
+ float *b = l.col_image_gpu + j;
+ float *c = output + j;
+
+ int m = l.n;
+ int n = 1;
+ int k = l.size*l.size*l.c;
+
+ gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+ }
+ }
+ activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer_gpu(local_layer l, network_state state)
+{
+ int i, j;
+ int locations = l.out_w*l.out_h;
+
+ gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
+ for(i = 0; i < l.batch; ++i){
+ axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
+ }
+
+ for(i = 0; i < l.batch; ++i){
+ float *input = state.input + i*l.w*l.h*l.c;
+ im2col_ongpu(input, l.c, l.h, l.w,
+ l.size, l.stride, l.pad, l.col_image_gpu);
+
+ for(j = 0; j < locations; ++j){
+ float *a = l.delta_gpu + i*l.outputs + j;
+ float *b = l.col_image_gpu + j;
+ float *c = l.filter_updates_gpu + j*l.size*l.size*l.c*l.n;
+ int m = l.n;
+ int n = l.size*l.size*l.c;
+ int k = 1;
+
+ gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+ }
+
+ if(state.delta){
+ for(j = 0; j < locations; ++j){
+ float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
+ float *b = l.delta_gpu + i*l.outputs + j;
+ float *c = l.col_image_gpu + j;
+
+ int m = l.size*l.size*l.c;
+ int n = 1;
+ int k = l.n;
+
+ gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+ }
+
+ col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+ }
+ }
+}
+
+void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay)
+{
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
+ scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
+
+ axpy_ongpu(size, -decay*batch, l.filters_gpu, 1, l.filter_updates_gpu, 1);
+ axpy_ongpu(size, learning_rate/batch, l.filter_updates_gpu, 1, l.filters_gpu, 1);
+ scal_ongpu(size, momentum, l.filter_updates_gpu, 1);
+}
+
+void pull_local_layer(local_layer l)
+{
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ cuda_pull_array(l.filters_gpu, l.filters, size);
+ cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
+}
+
+void push_local_layer(local_layer l)
+{
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ cuda_push_array(l.filters_gpu, l.filters, size);
+ cuda_push_array(l.biases_gpu, l.biases, l.outputs);
+}
+#endif
diff --git a/src/local_layer.h b/src/local_layer.h
new file mode 100644
index 0000000..675a5fb
--- /dev/null
+++ b/src/local_layer.h
@@ -0,0 +1,31 @@
+#ifndef LOCAL_LAYER_H
+#define LOCAL_LAYER_H
+
+#include "cuda.h"
+#include "params.h"
+#include "image.h"
+#include "activations.h"
+#include "layer.h"
+
+typedef layer local_layer;
+
+#ifdef GPU
+void forward_local_layer_gpu(local_layer layer, network_state state);
+void backward_local_layer_gpu(local_layer layer, network_state state);
+void update_local_layer_gpu(local_layer layer, int batch, float learning_rate, float momentum, float decay);
+
+void push_local_layer(local_layer layer);
+void pull_local_layer(local_layer layer);
+#endif
+
+local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
+
+void forward_local_layer(const local_layer layer, network_state state);
+void backward_local_layer(local_layer layer, network_state state);
+void update_local_layer(local_layer layer, int batch, float learning_rate, float momentum, float decay);
+
+void bias_output(float *output, float *biases, int batch, int n, int size);
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
+
+#endif
+
diff --git a/src/network.c b/src/network.c
index 9bcb264..6c7461d 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "local_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
@@ -59,6 +60,8 @@
switch(a){
case CONVOLUTIONAL:
return "convolutional";
+ case LOCAL:
+ return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
@@ -112,6 +115,8 @@
forward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer(l, state);
+ } else if(l.type == LOCAL){
+ forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
} else if(l.type == DETECTION){
@@ -150,6 +155,8 @@
update_deconvolutional_layer(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == LOCAL){
+ update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
}
}
@@ -219,6 +226,8 @@
if(i != 0) backward_softmax_layer(l, state);
} else if(l.type == CONNECTED){
backward_connected_layer(l, state);
+ } else if(l.type == LOCAL){
+ backward_local_layer(l, state);
} else if(l.type == COST){
backward_cost_layer(l, state);
} else if(l.type == ROUTE){
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 8561372..ffd5c59 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -19,6 +19,7 @@
#include "avgpool_layer.h"
#include "normalization_layer.h"
#include "cost_layer.h"
+#include "local_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
@@ -41,6 +42,8 @@
forward_convolutional_layer_gpu(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer_gpu(l, state);
+ } else if(l.type == LOCAL){
+ forward_local_layer_gpu(l, state);
} else if(l.type == DETECTION){
forward_detection_layer_gpu(l, state);
} else if(l.type == CONNECTED){
@@ -85,6 +88,8 @@
backward_convolutional_layer_gpu(l, state);
} else if(l.type == DECONVOLUTIONAL){
backward_deconvolutional_layer_gpu(l, state);
+ } else if(l.type == LOCAL){
+ backward_local_layer_gpu(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer_gpu(l, state);
} else if(l.type == AVGPOOL){
@@ -120,6 +125,8 @@
update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == LOCAL){
+ update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
}
}
}
diff --git a/src/nightmare.c b/src/nightmare.c
index 0eb3ca1..1a78dd5 100644
--- a/src/nightmare.c
+++ b/src/nightmare.c
@@ -25,7 +25,7 @@
}
}
-void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh)
+void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm)
{
scale_image(orig, 2);
translate_image(orig, -1);
@@ -85,7 +85,7 @@
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
- normalize_array(out.data, out.w*out.h*out.c);
+ if(norm) normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);
/*
@@ -123,6 +123,7 @@
int max_layer = atoi(argv[5]);
int range = find_int_arg(argc, argv, "-range", 1);
+ int norm = find_int_arg(argc, argv, "-norm", 1);
int rounds = find_int_arg(argc, argv, "-rounds", 1);
int iters = find_int_arg(argc, argv, "-iters", 10);
int octaves = find_int_arg(argc, argv, "-octaves", 4);
@@ -160,7 +161,7 @@
fflush(stderr);
int layer = max_layer + rand()%range - range/2;
int octave = rand()%octaves;
- optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh);
+ optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
}
fprintf(stderr, "done\n");
if(0){
diff --git a/src/parser.c b/src/parser.c
index b095294..277c6e2 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -15,6 +15,7 @@
#include "dropout_layer.h"
#include "detection_layer.h"
#include "avgpool_layer.h"
+#include "local_layer.h"
#include "route_layer.h"
#include "list.h"
#include "option_list.h"
@@ -27,6 +28,7 @@
int is_network(section *s);
int is_convolutional(section *s);
+int is_local(section *s);
int is_deconvolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
@@ -107,6 +109,27 @@
return layer;
}
+local_layer parse_local(list *options, size_params params)
+{
+ int n = option_find_int(options, "filters",1);
+ int size = option_find_int(options, "size",1);
+ int stride = option_find_int(options, "stride",1);
+ int pad = option_find_int(options, "pad",0);
+ char *activation_s = option_find_str(options, "activation", "logistic");
+ ACTIVATION activation = get_activation(activation_s);
+
+ int batch,h,w,c;
+ h = params.h;
+ w = params.w;
+ c = params.c;
+ batch=params.batch;
+ if(!(h && w && c)) error("Layer before local layer must output image.");
+
+ local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
+
+ return layer;
+}
+
convolutional_layer parse_convolutional(list *options, size_params params)
{
int n = option_find_int(options, "filters",1);
@@ -402,6 +425,8 @@
layer l = {0};
if(is_convolutional(s)){
l = parse_convolutional(options, params);
+ }else if(is_local(s)){
+ l = parse_local(options, params);
}else if(is_deconvolutional(s)){
l = parse_deconvolutional(options, params);
}else if(is_connected(s)){
@@ -465,6 +490,10 @@
{
return (strcmp(s->type, "[detection]")==0);
}
+int is_local(section *s)
+{
+ return (strcmp(s->type, "[local]")==0);
+}
int is_deconvolutional(section *s)
{
return (strcmp(s->type, "[deconv]")==0
@@ -626,6 +655,16 @@
#endif
fwrite(l.biases, sizeof(float), l.outputs, fp);
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+ } if(l.type == LOCAL){
+#ifdef GPU
+ if(gpu_index >= 0){
+ pull_local_layer(l);
+ }
+#endif
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ fwrite(l.biases, sizeof(float), l.outputs, fp);
+ fwrite(l.filters, sizeof(float), size, fp);
}
}
fclose(fp);
@@ -686,6 +725,17 @@
}
#endif
}
+ if(l.type == LOCAL){
+ int locations = l.out_w*l.out_h;
+ int size = l.size*l.size*l.c*l.n*locations;
+ fread(l.biases, sizeof(float), l.outputs, fp);
+ fread(l.filters, sizeof(float), size, fp);
+#ifdef GPU
+ if(gpu_index >= 0){
+ push_local_layer(l);
+ }
+#endif
+ }
}
fprintf(stderr, "Done!\n");
fclose(fp);
diff --git a/src/yolo.c b/src/yolo.c
index 2abfa13..7da69f7 100644
--- a/src/yolo.c
+++ b/src/yolo.c
@@ -11,7 +11,7 @@
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char *label)
+void draw_yolo(image im, int num, float thresh, box *boxes, float **probs)
{
int classes = 20;
int i;
@@ -20,8 +20,10 @@
int class = max_index(probs[i], classes);
float prob = probs[i][class];
if(prob > thresh){
- int width = pow(prob, 1./2.)*10;
- printf("%f %s\n", prob, voc_names[class]);
+ int width = pow(prob, 1./2.)*10+1;
+ //width = 8;
+ printf("%s: %.2f\n", voc_names[class], prob);
+ class = class * 7 % 20;
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
@@ -41,7 +43,6 @@
draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
- show_image(im, label);
}
void train_yolo(char *cfgfile, char *weightfile)
@@ -97,21 +98,13 @@
printf("Loaded: %lf seconds\n", sec(clock()-time));
- /*
- image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
- image copy = copy_image(im);
- draw_yolo(copy, train.y.vals[113], 7, "truth");
- cvWaitKey(0);
- free_image(copy);
- */
-
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
- if(i%1000==0){
+ if(i%1000==0 || i == 600){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
@@ -183,8 +176,8 @@
srand(time(0));
char *base = "results/comp4_det_test_";
- //list *plist = get_paths("data/voc.2007.test");
- list *plist = get_paths("data/voc.2012.test");
+ list *plist = get_paths("data/voc.2007.test");
+ //list *plist = get_paths("data/voc.2012.test");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
@@ -384,7 +377,8 @@
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
- draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+ draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs);
+ show_image(im, "predictions");
show_image(sized, "resized");
free_image(im);
diff --git a/src/yolo_kernels.cu b/src/yolo_kernels.cu
index f02b7a2..487e9bd 100644
--- a/src/yolo_kernels.cu
+++ b/src/yolo_kernels.cu
@@ -6,6 +6,7 @@
#include "parser.h"
#include "box.h"
#include "image.h"
+#include <sys/time.h>
}
#ifdef OPENCV
@@ -13,48 +14,108 @@
#include "opencv2/imgproc/imgproc.hpp"
extern "C" image ipl_to_image(IplImage* src);
extern "C" void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
-extern "C" void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char *label);
+extern "C" void draw_yolo(image im, int num, float thresh, box *boxes, float **probs);
+
+static float **probs;
+static box *boxes;
+static network net;
+static image in ;
+static image in_s ;
+static image det ;
+static image det_s;
+static image disp ;
+static cv::VideoCapture cap;
+static float fps = 0;
+
+void *fetch_in_thread(void *ptr)
+{
+ cv::Mat frame_m;
+ cap >> frame_m;
+ IplImage frame = frame_m;
+ in = ipl_to_image(&frame);
+ rgbgr_image(in);
+ in_s = resize_image(in, net.w, net.h);
+ return 0;
+}
+
+void *detect_in_thread(void *ptr)
+{
+ float nms = .4;
+ float thresh = .2;
+
+ detection_layer l = net.layers[net.n-1];
+ float *X = det_s.data;
+ float *predictions = network_predict(net, X);
+ free_image(det_s);
+ convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+ if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nFPS:%.0f\n",fps);
+ printf("Objects:\n\n");
+ draw_yolo(det, l.side*l.side*l.n, thresh, boxes, probs);
+ return 0;
+}
extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh)
{
- network net = parse_network_cfg(cfgfile);
+ printf("YOLO demo\n");
+ net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
- detection_layer l = net.layers[net.n-1];
- cv::VideoCapture cap(0);
-
set_batch_network(&net, 1);
+
srand(2222222);
- float nms = .4;
+
+ cv::VideoCapture cam(0);
+ cap = cam;
+ if(!cap.isOpened()) error("Couldn't connect to webcam.\n");
+
+ detection_layer l = net.layers[net.n-1];
int j;
- box *boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
- float **probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+
+ boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+ probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+ pthread_t fetch_thread;
+ pthread_t detect_thread;
+
+ fetch_in_thread(0);
+ det = in;
+ det_s = in_s;
+
+ fetch_in_thread(0);
+ detect_in_thread(0);
+ disp = det;
+ det = in;
+ det_s = in_s;
+
while(1){
- cv::Mat frame_m;
- cap >> frame_m;
- IplImage frame = frame_m;
- image im = ipl_to_image(&frame);
- rgbgr_image(im);
-
- image sized = resize_image(im, net.w, net.h);
- float *X = sized.data;
- float *predictions = network_predict(net, X);
- convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
- if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
- printf("\033[2J");
- printf("\033[1;1H");
- printf("\nObjects:\n\n");
- draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
-
- free_image(im);
- free_image(sized);
+ struct timeval tval_before, tval_after, tval_result;
+ gettimeofday(&tval_before, NULL);
+ if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
+ if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
+ show_image(disp, "YOLO");
+ free_image(disp);
cvWaitKey(1);
+ pthread_join(fetch_thread, 0);
+ pthread_join(detect_thread, 0);
+
+ disp = det;
+ det = in;
+ det_s = in_s;
+
+ gettimeofday(&tval_after, NULL);
+ timersub(&tval_after, &tval_before, &tval_result);
+ float curr = 1000000.f/((long int)tval_result.tv_usec);
+ fps = .9*fps + .1*curr;
}
}
#else
-extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh){}
+extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh){
+ fprintf(stderr, "YOLO demo needs OpenCV for webcam images.\n");
+}
#endif
--
Gitblit v1.10.0