From 0d6b107ed20c22412ccf3a5056cffdb35bc25534 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 16 Nov 2016 06:53:58 +0000
Subject: [PATCH] hey
---
src/region_layer.c | 110 ++++++++++++++++++++++++++++++++++++++++++-------------
1 files changed, 84 insertions(+), 26 deletions(-)
diff --git a/src/region_layer.c b/src/region_layer.c
index ac30e88..5e8387d 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -9,6 +9,8 @@
#include <string.h>
#include <stdlib.h>
+#define DOABS 1
+
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
{
region_layer l = {0};
@@ -48,7 +50,26 @@
return l;
}
-#define DOABS 1
+void resize_region_layer(layer *l, int w, int h)
+{
+ l->w = w;
+ l->h = h;
+
+ l->outputs = h*w*l->n*(l->classes + l->coords + 1);
+ l->inputs = l->outputs;
+
+ l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+ l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
+
+#ifdef GPU
+ cuda_free(l->delta_gpu);
+ cuda_free(l->output_gpu);
+
+ l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+ l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+#endif
+}
+
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
{
box b;
@@ -125,7 +146,9 @@
int i,j,b,t,n;
int size = l.coords + l.classes + 1;
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
- reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+ #ifndef GPU
+ flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
+ #endif
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
int index = size*i + b*l.outputs;
@@ -134,25 +157,14 @@
}
+#ifndef GPU
if (l.softmax_tree){
-#ifdef GPU
- cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
- int i;
- int count = 5;
- for (i = 0; i < l.softmax_tree->groups; ++i) {
- int group_size = l.softmax_tree->group_size[i];
- softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
- count += group_size;
- }
- cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-#else
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
int index = size*i + b*l.outputs;
softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
}
}
-#endif
} else if (l.softmax){
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
@@ -161,6 +173,7 @@
}
}
}
+#endif
if(!state.train) return;
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
float avg_iou = 0;
@@ -172,6 +185,32 @@
int class_count = 0;
*(l.cost) = 0;
for (b = 0; b < l.batch; ++b) {
+ if(l.softmax_tree){
+ int onlyclass = 0;
+ for(t = 0; t < 30; ++t){
+ box truth = float_to_box(state.truth + t*5 + b*l.truths);
+ if(!truth.x) break;
+ int class = state.truth[t*5 + b*l.truths + 4];
+ float maxp = 0;
+ int maxi = 0;
+ if(truth.x > 100000 && truth.y > 100000){
+ for(n = 0; n < l.n*l.w*l.h; ++n){
+ int index = size*n + b*l.outputs + 5;
+ float p = get_hierarchy_probability(l.output + index, l.softmax_tree, class);
+ if(p > maxp){
+ maxp = p;
+ maxi = n;
+ }
+ }
+ int index = size*maxi + b*l.outputs + 5;
+ delta_region_class(l.output, l.delta, index, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
+ ++class_count;
+ onlyclass = 1;
+ break;
+ }
+ }
+ if(onlyclass) continue;
+ }
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
@@ -273,7 +312,9 @@
}
}
//printf("\n");
- reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+ #ifndef GPU
+ flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+ #endif
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
}
@@ -308,13 +349,18 @@
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
int found = 0;
for(j = l.classes - 1; j >= 0; --j){
- if(!found && predictions[class_index + j] > .5){
- found = 1;
- } else {
- predictions[class_index + j] = 0;
+ if(1){
+ if(!found && predictions[class_index + j] > .5){
+ found = 1;
+ } else {
+ predictions[class_index + j] = 0;
+ }
+ float prob = predictions[class_index+j];
+ probs[index][j] = (scale > thresh) ? prob : 0;
+ }else{
+ float prob = scale*predictions[class_index+j];
+ probs[index][j] = (prob > thresh) ? prob : 0;
}
- float prob = predictions[class_index+j];
- probs[index][j] = (scale > thresh) ? prob : 0;
}
}else{
for(j = 0; j < l.classes; ++j){
@@ -339,6 +385,18 @@
return;
}
*/
+ flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
+ if(l.softmax_tree){
+ int i;
+ int count = 5;
+ for (i = 0; i < l.softmax_tree->groups; ++i) {
+ int group_size = l.softmax_tree->group_size[i];
+ softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
+ count += group_size;
+ }
+ }else if (l.softmax){
+ softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
+ }
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
@@ -347,22 +405,22 @@
truth_cpu = calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
- cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
network_state cpu_state = state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_region_layer(l, cpu_state);
- cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
- cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+ //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
free(cpu_state.input);
+ if(!state.train) return;
+ cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
if(cpu_state.truth) free(cpu_state.truth);
}
void backward_region_layer_gpu(region_layer l, network_state state)
{
- axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
- //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+ flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
}
#endif
--
Gitblit v1.10.0