From 0d6bb5d44d8e815ebf6ccce1dae2f83178780e7b Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 03 Dec 2013 00:41:40 +0000
Subject: [PATCH] Working?

---
 src/tests.c |  187 ++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 162 insertions(+), 25 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 65811e9..722de1a 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -6,6 +6,7 @@
 #include "parser.h"
 #include "data.h"
 #include "matrix.h"
+#include "utils.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -21,7 +22,7 @@
     int i;
     clock_t start = clock(), end;
     for(i = 0; i < 1000; ++i){
-        convolve(dog, kernel, 1, 0, edge);
+        convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
     printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
@@ -57,6 +58,61 @@
     show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
 }
 
+void verify_convolutional_layer()
+{
+    srand(0);
+    int i;
+    int n = 1;
+    int stride = 1;
+    int size = 3;
+    double eps = .00000001;
+    image test = make_random_image(5,5, 1);
+    convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
+    image out = get_convolutional_image(layer);
+    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
+    
+    forward_convolutional_layer(layer, test.data);
+    image base = copy_image(out);
+
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        test.data[i] += eps;
+        forward_convolutional_layer(layer, test.data);
+        image partial = copy_image(out);
+        subtract_image(partial, base);
+        scale_image(partial, 1/eps);
+        jacobian[i] = partial.data;
+        test.data[i] -= eps;
+    }
+    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
+    image in_delta = make_image(test.h, test.w, test.c);
+    image out_delta = get_convolutional_delta(layer);
+    for(i = 0; i < out.h*out.w*out.c; ++i){
+        out_delta.data[i] = 1;
+        backward_convolutional_layer2(layer, test.data, in_delta.data);
+        image partial = copy_image(in_delta);
+        jacobian2[i] = partial.data;
+        out_delta.data[i] = 0;
+    }
+    int j;
+    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    for(i = 0; i < test.h*test.w*test.c; ++i){
+        for(j =0 ; j < out.h*out.w*out.c; ++j){
+            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
+            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
+            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
+        }
+    }
+
+
+    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
+    show_image(mj1, "forward jacobian");
+    show_image(mj2, "backward jacobian");
+    
+}
+
 void test_load()
 {
     image dog = load_image("dog.jpg");
@@ -119,30 +175,26 @@
 
 void test_data()
 {
-    batch train = random_batch("train_paths.txt", 101);
+    char *labels[] = {"cat","dog"};
+    batch train = random_batch("train_paths.txt", 101,labels, 2);
     show_image(train.images[0], "Test Data Loading");
     show_image(train.images[100], "Test Data Loading");
     show_image(train.images[10], "Test Data Loading");
     free_batch(train);
 }
 
-void test_train()
+void test_full()
 {
-    network net = parse_network_cfg("test.cfg");
+    network net = parse_network_cfg("full.cfg");
     srand(0);
-    //visualize_network(net);
-    int i = 1000;
-    //while(1){
-    while(i > 0){
-        batch train = random_batch("train_paths.txt", 100);
+    int i = 0;
+    char *labels[] = {"cat","dog"};
+    while(i++ < 1000 || 1){
+        batch train = random_batch("train_paths.txt", 1000, labels, 2);
         train_network_batch(net, train);
-        //show_image_layers(get_network_image(net), "hey");
-        //visualize_network(net);
-        //cvWaitKey(0);
         free_batch(train);
-        --i;
-        }
-    //}
+        printf("Round %d\n", i);
+    }
 }
 
 double error_network(network net, matrix m, double *truth)
@@ -158,9 +210,90 @@
     return (double)correct/m.rows;
 }
 
-void classify_random_filters()
+double **one_hot(double *a, int n, int k)
 {
-    network net = parse_network_cfg("random_filter_finish.cfg");
+    int i;
+    double **t = calloc(n, sizeof(double*));
+    for(i = 0; i < n; ++i){
+        t[i] = calloc(k, sizeof(double));
+        int index = (int)a[i];
+        t[i][index] = 1;
+    }
+    return t;
+}
+
+void test_nist()
+{
+    network net = parse_network_cfg("nist.cfg");
+    matrix m = csv_to_matrix("images/nist_train.csv");
+    matrix ho = hold_out_matrix(&m, 3000);
+    double *truth_1d = pop_column(&m, 0);
+    double **truth = one_hot(truth_1d, m.rows, 10);
+    double *ho_truth_1d = pop_column(&ho, 0);
+    double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10);
+    int i,j;
+    clock_t start = clock(), end;
+    int count = 0;
+    double lr = .0001;
+    while(++count <= 3000000){
+        //lr *= .99;
+        int index = 0;
+        int correct = 0;
+        for(i = 0; i < 1000; ++i){
+            index = rand()%m.rows;
+            normalize_array(m.vals[index], 28*28);
+            forward_network(net, m.vals[index]);
+            double *out = get_network_output(net);
+            double *delta = get_network_delta(net);
+            int max_i = 0;
+            double max = out[0];
+            for(j = 0; j < 10; ++j){
+                delta[j] = truth[index][j]-out[j];
+                if(out[j] > max){
+                    max = out[j];
+                    max_i = j;
+                }
+            }
+            if(truth[index][max_i]) ++correct;
+            learn_network(net, m.vals[index]);
+            update_network(net, lr);
+        }
+        print_network(net);
+        image input = double_to_image(28,28,1, m.vals[index]);
+        show_image(input, "Input");
+        image o = get_network_image(net);
+        show_image_collapsed(o, "Output");
+        visualize_network(net);
+        cvWaitKey(100);
+        //double test_acc = error_network(net, m, truth);
+        //double valid_acc = error_network(net, ho, ho_truth);
+        //printf("%f, %f\n", test_acc, valid_acc);
+        fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr);
+        //if(valid_acc > .70) break;
+    }
+    end = clock();
+    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+}
+
+void test_kernel_update()
+{
+    srand(0);
+    double delta[] = {.1};
+    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
+    double kernel[] = {1,2,3,4,5,6,7,8,9};
+    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY);
+    layer.kernels[0].data = kernel;
+    layer.delta = delta;
+    learn_convolutional_layer(layer, input);
+    print_image(layer.kernels[0]);
+    print_image(get_convolutional_delta(layer));
+    print_image(layer.kernel_updates[0]);
+    
+}
+
+void test_random_classify()
+{
+    network net = parse_network_cfg("connected.cfg");
     matrix m = csv_to_matrix("train.csv");
     matrix ho = hold_out_matrix(&m, 2500);
     double *truth = pop_column(&m, 0);
@@ -181,7 +314,7 @@
            // printf("%f\n", delta[0]);
             //printf("%f %f\n", truth[index], out[0]);
             learn_network(net, m.vals[index]);
-            update_network(net, .000005);
+            update_network(net, .00001);
         }
         double test_acc = error_network(net, m, truth);
         double valid_acc = error_network(net, ho, ho_truth);
@@ -203,15 +336,16 @@
     printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
 }
 
-void test_random_filters()
+void test_random_preprocess()
 {
-    FILE *file = fopen("test.csv", "w");
+    FILE *file = fopen("train.csv", "w");
+    char *labels[] = {"cat","dog"};
     int i,j,k;
     srand(0);
-    network net = parse_network_cfg("test_random_filter.cfg");
+    network net = parse_network_cfg("convolutional.cfg");
     for(i = 0; i < 100; ++i){
         printf("%d\n", i);
-        batch part = get_batch("test_paths.txt", i, 100);
+        batch part = get_batch("train_paths.txt", i, 100, labels, 2);
         for(j = 0; j < part.n; ++j){
             forward_network(net, part.images[j].data);
             double *out = get_network_output(net);
@@ -227,9 +361,11 @@
 
 int main()
 {
-    //classify_random_filters();
-    //test_random_filters();
-    test_train();
+    //test_kernel_update();
+    //test_nist();
+    test_full();
+    //test_random_preprocess();
+    //test_random_classify();
     //test_parser();
     //test_backpropagate();
     //test_ann();
@@ -239,6 +375,7 @@
     //test_load();
     //test_network();
     //test_convolutional_layer();
+    //verify_convolutional_layer();
     //test_color();
     cvWaitKey(0);
     return 0;

--
Gitblit v1.10.0