From 0dab894a5be9f7d10d85e89dea91d02c71bae84d Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:24:45 +0000
Subject: [PATCH] Moving files from MTGCardDetector repo
---
src/batchnorm_layer.c | 175 ++++++++++++++++++++++------------------------------------
1 files changed, 67 insertions(+), 108 deletions(-)
diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 0151582..3fa129d 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -53,10 +53,10 @@
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#ifdef CUDNN
- cudnnCreateTensorDescriptor(&layer.normTensorDesc);
- cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
- cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
- cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+ cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+ cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+ cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+ cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
#endif
#endif
return layer;
@@ -176,15 +176,33 @@
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
}
-/*
+
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
- if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
- if(l.type == CONNECTED){
- l.out_c = l.outputs;
- l.out_h = l.out_w = 1;
- }
+ if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
if (state.train) {
+#ifdef CUDNN
+ float one = 1;
+ float zero = 0;
+ cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ l.normDstTensorDesc,
+ l.x_gpu, // input
+ l.normDstTensorDesc,
+ l.output_gpu, // output
+ l.normTensorDesc,
+ l.scales_gpu,
+ l.biases_gpu,
+ .01,
+ l.rolling_mean_gpu, // output (should be FP32)
+ l.rolling_variance_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // output (should be FP32)
+ l.variance_gpu); // output (should be FP32)
+#else
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
@@ -196,15 +214,50 @@
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
- } else {
+
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+#endif
+ }
+ else {
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
}
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
}
-void backward_batchnorm_layer_gpu(const layer l, network_state state)
+void backward_batchnorm_layer_gpu(layer l, network_state state)
{
+ if (!state.train) {
+ l.mean_gpu = l.rolling_mean_gpu;
+ l.variance_gpu = l.rolling_variance_gpu;
+ }
+#ifdef CUDNN
+ float one = 1;
+ float zero = 0;
+ cudnnBatchNormalizationBackward(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ &one,
+ &one,
+ l.normDstTensorDesc,
+ l.x_gpu, // input
+ l.normDstTensorDesc,
+ l.delta_gpu, // input
+ l.normDstTensorDesc,
+ l.x_norm_gpu, // output
+ l.normTensorDesc,
+ l.scales_gpu, // output (should be FP32)
+ l.scale_updates_gpu, // output (should be FP32)
+ l.bias_updates_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // input (should be FP32)
+ l.variance_gpu); // input (should be FP32)
+ copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+#else
+ backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
@@ -212,101 +265,7 @@
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
- if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-}
#endif
-*/
-
-
-void forward_batchnorm_layer_gpu(layer l, network_state state)
-{
- if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
- if (state.train) {
-#ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationForwardTraining(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- l.dstTensorDesc,
- l.x_gpu,
- l.dstTensorDesc,
- l.output_gpu,
- l.normTensorDesc,
- l.scales_gpu,
- l.biases_gpu,
- .01,
- l.rolling_mean_gpu,
- l.rolling_variance_gpu,
- .00001,
- l.mean_gpu,
- l.variance_gpu);
-#else
- fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
- fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
-
- scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
- scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
-
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
- normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
-#endif
- }
- else {
- normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- }
-
-}
-
-void backward_batchnorm_layer_gpu(layer l, network_state state)
-{
- if (!state.train) {
- l.mean_gpu = l.rolling_mean_gpu;
- l.variance_gpu = l.rolling_variance_gpu;
- }
-#ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationBackward(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- &one,
- &one,
- l.dstTensorDesc,
- l.x_gpu,
- l.dstTensorDesc,
- l.delta_gpu,
- l.dstTensorDesc,
- l.x_norm_gpu,
- l.normTensorDesc,
- l.scales_gpu,
- l.scale_updates_gpu,
- l.bias_updates_gpu,
- .00001,
- l.mean_gpu,
- l.variance_gpu);
- copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
-#else
- backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
-
- scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-
- fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
- fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
- normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-#endif
- if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+ if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
}
#endif
\ No newline at end of file
--
Gitblit v1.10.0