From 0dab894a5be9f7d10d85e89dea91d02c71bae84d Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:24:45 +0000
Subject: [PATCH] Moving files from MTGCardDetector repo
---
src/coco.c | 106 ++++++++++++++++++----------------------------------
1 files changed, 37 insertions(+), 69 deletions(-)
diff --git a/src/coco.c b/src/coco.c
index b532d62..1913a47 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -6,6 +6,7 @@
#include "utils.h"
#include "parser.h"
#include "box.h"
+#include "demo.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
@@ -15,15 +16,14 @@
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
-image coco_labels[80];
-
void train_coco(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
- char *train_images = "/home/pjreddie/data/coco/train.txt";
+ //char *train_images = "/home/pjreddie/data/coco/train.txt";
+ char *train_images = "data/coco.trainval.txt";
+ //char *train_images = "data/bags.train.list";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
- data_seed = time(0);
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
@@ -59,6 +59,11 @@
args.d = &buffer;
args.type = REGION_DATA;
+ args.angle = net.angle;
+ args.exposure = net.exposure;
+ args.saturation = net.saturation;
+ args.hue = net.hue;
+
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
@@ -85,11 +90,16 @@
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
- if(i%1000==0){
+ if(i%1000==0 || (i < 1000 && i%100 == 0)){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
+ if(i%100==0){
+ char buff[256];
+ sprintf(buff, "%s/%s.backup", backup_directory, base);
+ save_weights(net, buff);
+ }
free_data(train);
}
char buff[256];
@@ -97,34 +107,6 @@
save_weights(net, buff);
}
-void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
- int i,j,n;
- //int per_cell = 5*num+classes;
- for (i = 0; i < side*side; ++i){
- int row = i / side;
- int col = i % side;
- for(n = 0; n < num; ++n){
- int index = i*num + n;
- int p_index = side*side*classes + i*num + n;
- float scale = predictions[p_index];
- int box_index = side*side*(classes + num) + (i*num + n)*4;
- boxes[index].x = (predictions[box_index + 0] + col) / side * w;
- boxes[index].y = (predictions[box_index + 1] + row) / side * h;
- boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
- boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
- for(j = 0; j < classes; ++j){
- int class_index = i*classes;
- float prob = scale*predictions[class_index+j];
- probs[index][j] = (prob > thresh) ? prob : 0;
- }
- if(only_objectness){
- probs[index][0] = scale;
- }
- }
- }
-}
-
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
@@ -174,7 +156,6 @@
layer l = net.layers[net.n-1];
int classes = l.classes;
- int square = l.sqrt;
int side = l.side;
int j;
@@ -231,11 +212,11 @@
char *path = paths[i+t-nthreads];
int image_id = get_coco_image_id(path);
float *X = val_resized[t].data;
- float *predictions = network_predict(net, X);
+ network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
- convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
- if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
+ get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
+ if (nms) do_nms_sort_v2(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
@@ -264,7 +245,6 @@
layer l = net.layers[net.n-1];
int classes = l.classes;
- int square = l.sqrt;
int side = l.side;
int j, k;
@@ -296,14 +276,12 @@
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
- float *predictions = network_predict(net, sized.data);
- convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+ network_predict(net, sized.data);
+ get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
- char *labelpath = find_replace(path, "images", "labels");
- labelpath = find_replace(labelpath, "JPEGImages", "labels");
- labelpath = find_replace(labelpath, ".jpg", ".txt");
- labelpath = find_replace(labelpath, ".JPEG", ".txt");
+ char labelpath[4096];
+ replace_image_to_label(path, labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
@@ -337,7 +315,7 @@
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
{
-
+ image **alphabet = load_alphabet();
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
@@ -367,14 +345,13 @@
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
- float *predictions = network_predict(net, X);
+ network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
- if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
- draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
+ get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
+ if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80);
+ save_image(im, "prediction");
show_image(im, "predictions");
-
- show_image(sized, "resized");
free_image(im);
free_image(sized);
#ifdef OPENCV
@@ -385,27 +362,17 @@
}
}
-void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename);
-static void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename)
-{
- #if defined(OPENCV) && defined(GPU)
- demo_coco(cfgfile, weightfile, thresh, cam_index, filename);
- #else
- fprintf(stderr, "Need to compile with GPU and OpenCV for demo.\n");
- #endif
-}
-
void run_coco(int argc, char **argv)
{
- int i;
- for(i = 0; i < 80; ++i){
- char buff[256];
- sprintf(buff, "data/labels/%s.png", coco_classes[i]);
- coco_labels[i] = load_image_color(buff, 0, 0);
- }
+ int dont_show = find_arg(argc, argv, "-dont_show");
+ int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
+ char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+ char *prefix = find_char_arg(argc, argv, "-prefix", 0);
float thresh = find_float_arg(argc, argv, "-thresh", .2);
+ float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
int cam_index = find_int_arg(argc, argv, "-c", 0);
- char *file = find_char_arg(argc, argv, "-file", 0);
+ int frame_skip = find_int_arg(argc, argv, "-s", 0);
+ int ext_output = find_arg(argc, argv, "-ext_output");
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
@@ -419,5 +386,6 @@
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
- else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, file);
+ else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, coco_classes, 80, frame_skip,
+ prefix, out_filename, http_stream_port, dont_show, ext_output);
}
--
Gitblit v1.10.0