From 0dab894a5be9f7d10d85e89dea91d02c71bae84d Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:24:45 +0000
Subject: [PATCH] Moving files from MTGCardDetector repo

---
 src/darknet.c |  332 ++++++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 290 insertions(+), 42 deletions(-)

diff --git a/src/darknet.c b/src/darknet.c
index 3709ed1..1dc073b 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -6,33 +6,31 @@
 #include "utils.h"
 #include "cuda.h"
 #include "blas.h"
+#include "connected_layer.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #endif
 
-extern void run_imagenet(int argc, char **argv);
+extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
+extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int ext_output);
+extern void run_voxel(int argc, char **argv);
 extern void run_yolo(int argc, char **argv);
+extern void run_detector(int argc, char **argv);
 extern void run_coco(int argc, char **argv);
 extern void run_writing(int argc, char **argv);
 extern void run_captcha(int argc, char **argv);
 extern void run_nightmare(int argc, char **argv);
 extern void run_dice(int argc, char **argv);
 extern void run_compare(int argc, char **argv);
-
-void change_rate(char *filename, float scale, float add)
-{
-    // Ready for some weird shit??
-    FILE *fp = fopen(filename, "r+b");
-    if(!fp) file_error(filename);
-    float rate = 0;
-    fread(&rate, sizeof(float), 1, fp);
-    printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
-    rate = rate*scale + add;
-    fseek(fp, 0, SEEK_SET);
-    fwrite(&rate, sizeof(float), 1, fp);
-    fclose(fp);
-}
+extern void run_classifier(int argc, char **argv);
+extern void run_char_rnn(int argc, char **argv);
+extern void run_vid_rnn(int argc, char **argv);
+extern void run_tag(int argc, char **argv);
+extern void run_cifar(int argc, char **argv);
+extern void run_go(int argc, char **argv);
+extern void run_art(int argc, char **argv);
+extern void run_super(int argc, char **argv);
 
 void average(int argc, char *argv[])
 {
@@ -42,13 +40,13 @@
     network net = parse_network_cfg(cfgfile);
     network sum = parse_network_cfg(cfgfile);
 
-    char *weightfile = argv[4];   
+    char *weightfile = argv[4];
     load_weights(&sum, weightfile);
 
     int i, j;
     int n = argc - 5;
     for(i = 0; i < n; ++i){
-        weightfile = argv[i+5];   
+        weightfile = argv[i+5];
         load_weights(&net, weightfile);
         for(j = 0; j < net.n; ++j){
             layer l = net.layers[j];
@@ -56,7 +54,12 @@
             if(l.type == CONVOLUTIONAL){
                 int num = l.n*l.c*l.size*l.size;
                 axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
-                axpy_cpu(num, 1, l.filters, 1, out.filters, 1);
+                axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
+                if(l.batch_normalize){
+                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
+                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
+                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
+                }
             }
             if(l.type == CONNECTED){
                 axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
@@ -70,7 +73,12 @@
         if(l.type == CONVOLUTIONAL){
             int num = l.n*l.c*l.size*l.size;
             scal_cpu(l.n, 1./n, l.biases, 1);
-            scal_cpu(num, 1./n, l.filters, 1);
+            scal_cpu(num, 1./n, l.weights, 1);
+                if(l.batch_normalize){
+                    scal_cpu(l.n, 1./n, l.scales, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
+                }
         }
         if(l.type == CONNECTED){
             scal_cpu(l.outputs, 1./n, l.biases, 1);
@@ -80,6 +88,66 @@
     save_weights(sum, outfile);
 }
 
+void speed(char *cfgfile, int tics)
+{
+    if (tics == 0) tics = 1000;
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    int i;
+    time_t start = time(0);
+    image im = make_image(net.w, net.h, net.c);
+    for(i = 0; i < tics; ++i){
+        network_predict(net, im.data);
+    }
+    double t = difftime(time(0), start);
+    printf("\n%d evals, %f Seconds\n", tics, t);
+    printf("Speed: %f sec/eval\n", t/tics);
+    printf("Speed: %f Hz\n", tics/t);
+}
+
+void operations(char *cfgfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int i;
+    long ops = 0;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
+        } else if(l.type == CONNECTED){
+            ops += 2l * l.inputs * l.outputs;
+        }
+    }
+    printf("Floating Point Operations: %ld\n", ops);
+    printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
+}
+
+void oneoff(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int oldn = net.layers[net.n - 2].n;
+    int c = net.layers[net.n - 2].c;
+    net.layers[net.n - 2].n = 9372;
+    net.layers[net.n - 2].biases += 5;
+    net.layers[net.n - 2].weights += 5*c;
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    net.layers[net.n - 2].biases -= 5;
+    net.layers[net.n - 2].weights -= 5*c;
+    net.layers[net.n - 2].n = oldn;
+    printf("%d\n", oldn);
+    layer l = net.layers[net.n - 2];
+    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
+    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
+    *net.seen = 0;
+    save_weights(net, outfile);
+}
+
 void partial(char *cfgfile, char *weightfile, char *outfile, int max)
 {
     gpu_index = -1;
@@ -91,17 +159,6 @@
     save_weights_upto(net, outfile, max);
 }
 
-void stacked(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    net.seen = 0;
-    save_weights_double(net, outfile);
-}
-
 #include "convolutional_layer.h"
 void rescale_net(char *cfgfile, char *weightfile, char *outfile)
 {
@@ -114,7 +171,7 @@
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            rescale_filters(l, 2, -.5);
+            rescale_weights(l, 2, -.5);
             break;
         }
     }
@@ -132,13 +189,153 @@
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            rgbgr_filters(l);
+            rgbgr_weights(l);
             break;
         }
     }
     save_weights(net, outfile);
 }
 
+void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
+            denormalize_convolutional_layer(l);
+        }
+        if (l.type == CONNECTED && l.batch_normalize) {
+            denormalize_connected_layer(l);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.input_z_layer);
+            denormalize_connected_layer(*l.input_r_layer);
+            denormalize_connected_layer(*l.input_h_layer);
+            denormalize_connected_layer(*l.state_z_layer);
+            denormalize_connected_layer(*l.state_r_layer);
+            denormalize_connected_layer(*l.state_h_layer);
+        }
+    }
+    save_weights(net, outfile);
+}
+
+layer normalize_layer(layer l, int n)
+{
+    int j;
+    l.batch_normalize=1;
+    l.scales = calloc(n, sizeof(float));
+    for(j = 0; j < n; ++j){
+        l.scales[j] = 1;
+    }
+    l.rolling_mean = calloc(n, sizeof(float));
+    l.rolling_variance = calloc(n, sizeof(float));
+    return l;
+}
+
+void normalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL && !l.batch_normalize){
+            net.layers[i] = normalize_layer(l, l.n);
+        }
+        if (l.type == CONNECTED && !l.batch_normalize) {
+            net.layers[i] = normalize_layer(l, l.outputs);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
+            *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
+            *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
+            *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
+            *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
+            *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
+            net.layers[i].batch_normalize=1;
+        }
+    }
+    save_weights(net, outfile);
+}
+
+void statistics_net(char *cfgfile, char *weightfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONNECTED && l.batch_normalize) {
+            printf("Connected Layer %d\n", i);
+            statistics_connected_layer(l);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            printf("GRU Layer %d\n", i);
+            printf("Input Z\n");
+            statistics_connected_layer(*l.input_z_layer);
+            printf("Input R\n");
+            statistics_connected_layer(*l.input_r_layer);
+            printf("Input H\n");
+            statistics_connected_layer(*l.input_h_layer);
+            printf("State Z\n");
+            statistics_connected_layer(*l.state_z_layer);
+            printf("State R\n");
+            statistics_connected_layer(*l.state_r_layer);
+            printf("State H\n");
+            statistics_connected_layer(*l.state_h_layer);
+        }
+        printf("\n");
+    }
+}
+
+void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
+            denormalize_convolutional_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == CONNECTED && l.batch_normalize) {
+            denormalize_connected_layer(l);
+            net.layers[i].batch_normalize=0;
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            denormalize_connected_layer(*l.input_z_layer);
+            denormalize_connected_layer(*l.input_r_layer);
+            denormalize_connected_layer(*l.input_h_layer);
+            denormalize_connected_layer(*l.state_z_layer);
+            denormalize_connected_layer(*l.state_r_layer);
+            denormalize_connected_layer(*l.state_h_layer);
+            l.input_z_layer->batch_normalize = 0;
+            l.input_r_layer->batch_normalize = 0;
+            l.input_h_layer->batch_normalize = 0;
+            l.state_z_layer->batch_normalize = 0;
+            l.state_r_layer->batch_normalize = 0;
+            l.state_h_layer->batch_normalize = 0;
+            net.layers[i].batch_normalize=0;
+        }
+    }
+    save_weights(net, outfile);
+}
+
 void visualize(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -153,6 +350,16 @@
 
 int main(int argc, char **argv)
 {
+#ifdef _DEBUG
+	_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
+#endif
+
+	int i;
+	for (i = 0; i < argc; ++i) {
+		if (!argv[i]) continue;
+		strip_args(argv[i]);
+	}
+
     //test_resize("data/bad.jpg");
     //test_box();
     //test_convolutional_layer();
@@ -161,47 +368,88 @@
         return 0;
     }
     gpu_index = find_int_arg(argc, argv, "-i", 0);
-    if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
+    if(find_arg(argc, argv, "-nogpu")) {
+        gpu_index = -1;
+    }
 
 #ifndef GPU
     gpu_index = -1;
 #else
     if(gpu_index >= 0){
-        cudaError_t status = cudaSetDevice(gpu_index);
-        check_error(status);
+        cuda_set_device(gpu_index);
+        check_error(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
     }
 #endif
 
-    if(0==strcmp(argv[1], "imagenet")){
-        run_imagenet(argc, argv);
-    } else if (0 == strcmp(argv[1], "average")){
+    if (0 == strcmp(argv[1], "average")){
         average(argc, argv);
     } else if (0 == strcmp(argv[1], "yolo")){
         run_yolo(argc, argv);
+    } else if (0 == strcmp(argv[1], "voxel")){
+        run_voxel(argc, argv);
+    } else if (0 == strcmp(argv[1], "super")){
+        run_super(argc, argv);
+    } else if (0 == strcmp(argv[1], "detector")){
+        run_detector(argc, argv);
+    } else if (0 == strcmp(argv[1], "detect")){
+        float thresh = find_float_arg(argc, argv, "-thresh", .24);
+		int ext_output = find_arg(argc, argv, "-ext_output");
+        char *filename = (argc > 4) ? argv[4]: 0;
+        test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, ext_output);
+    } else if (0 == strcmp(argv[1], "cifar")){
+        run_cifar(argc, argv);
+    } else if (0 == strcmp(argv[1], "go")){
+        run_go(argc, argv);
+    } else if (0 == strcmp(argv[1], "rnn")){
+        run_char_rnn(argc, argv);
+    } else if (0 == strcmp(argv[1], "vid")){
+        run_vid_rnn(argc, argv);
     } else if (0 == strcmp(argv[1], "coco")){
         run_coco(argc, argv);
+    } else if (0 == strcmp(argv[1], "classify")){
+        predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
+    } else if (0 == strcmp(argv[1], "classifier")){
+        run_classifier(argc, argv);
+    } else if (0 == strcmp(argv[1], "art")){
+        run_art(argc, argv);
+    } else if (0 == strcmp(argv[1], "tag")){
+        run_tag(argc, argv);
     } else if (0 == strcmp(argv[1], "compare")){
         run_compare(argc, argv);
     } else if (0 == strcmp(argv[1], "dice")){
         run_dice(argc, argv);
     } else if (0 == strcmp(argv[1], "writing")){
         run_writing(argc, argv);
+    } else if (0 == strcmp(argv[1], "3d")){
+        composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
     } else if (0 == strcmp(argv[1], "test")){
         test_resize(argv[2]);
     } else if (0 == strcmp(argv[1], "captcha")){
         run_captcha(argc, argv);
     } else if (0 == strcmp(argv[1], "nightmare")){
         run_nightmare(argc, argv);
-    } else if (0 == strcmp(argv[1], "change")){
-        change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
     } else if (0 == strcmp(argv[1], "rgbgr")){
         rgbgr_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "reset")){
+        reset_normalize_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "denormalize")){
+        denormalize_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "statistics")){
+        statistics_net(argv[2], argv[3]);
+    } else if (0 == strcmp(argv[1], "normalize")){
+        normalize_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "rescale")){
         rescale_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "ops")){
+        operations(argv[2]);
+    } else if (0 == strcmp(argv[1], "speed")){
+        speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
+    } else if (0 == strcmp(argv[1], "oneoff")){
+        oneoff(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "partial")){
         partial(argv[2], argv[3], argv[4], atoi(argv[5]));
-    } else if (0 == strcmp(argv[1], "stacked")){
-        stacked(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "average")){
+        average(argc, argv);
     } else if (0 == strcmp(argv[1], "visualize")){
         visualize(argv[2], (argc > 3) ? argv[3] : 0);
     } else if (0 == strcmp(argv[1], "imtest")){

--
Gitblit v1.10.0