From 0dab894a5be9f7d10d85e89dea91d02c71bae84d Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 03:24:45 +0000
Subject: [PATCH] Moving files from MTGCardDetector repo

---
 transform_data.py |  567 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 567 insertions(+), 0 deletions(-)

diff --git a/transform_data.py b/transform_data.py
new file mode 100644
index 0000000..9952a99
--- /dev/null
+++ b/transform_data.py
@@ -0,0 +1,567 @@
+import os
+import random
+import math
+import cv2
+import numpy as np
+import imutils
+import pandas as pd
+import fetch_data
+import generate_data
+from shapely import geometry
+import pytesseract
+import imgaug as ia
+from imgaug import augmenters as iaa
+from imgaug import parameters as iap
+
+card_mask = cv2.imread('data/mask.png')
+data_dir = os.path.abspath('/media/win10/data')
+darknet_dir = os.path.abspath('darknet')
+
+
+def key_pts_to_yolo(key_pts, w_img, h_img):
+    """
+    Convert a list of keypoints into a yolo training format
+    :param key_pts: list of keypoints
+    :param w_img: width of the entire image
+    :param h_img: height of the entire image
+    :return: <x> <y> <width> <height>
+    """
+    x1 = max(0, min([pt[0] for pt in key_pts]))
+    x2 = min(w_img, max([pt[0] for pt in key_pts]))
+    y1 = max(0, min([pt[1] for pt in key_pts]))
+    y2 = min(h_img, max([pt[1] for pt in key_pts]))
+    x = (x2 + x1) / 2 / w_img
+    y = (y2 + y1) / 2 / h_img
+    width = (x2 - x1) / w_img
+    height = (y2 - y1) / h_img
+    return x, y, width, height
+
+
+class ImageGenerator:
+    """
+    A template for generating a training image.
+    """
+    def __init__(self, img_bg, class_ids, width, height, skew=None, cards=None):
+        """
+        :param img_bg: background (textile) image
+        :param width: width of the training image
+        :param height: height of the training image
+        :param skew: 4 coordinates that indicates the corners (in normalized form) for perspective transform
+        :param cards: list of Card objects
+        """
+        self.img_bg = img_bg
+        self.class_ids = class_ids
+        self.img_result = None
+        self.width = width
+        self.height = height
+        if cards is None:
+            self.cards = []
+        else:
+            self.cards = cards
+
+        # Compute transform matrix for perspective transform
+        if skew is not None:
+            orig_corner = np.array([[0, 0], [0, height], [width, height], [width, 0]], dtype=np.float32)
+            new_corner = np.array([[width * s[0], height * s[1]] for s in skew], dtype=np.float32)
+            self.M = cv2.getPerspectiveTransform(orig_corner, new_corner)
+            pass
+        else:
+            self.M = None
+        pass
+
+    def add_card(self, card, x=None, y=None, theta=0.0, scale=1.0):
+        """
+        Add a card to this generator scenario.
+        :param card: card to be added
+        :param x: new X-coordinate for the centre of the card
+        :param y: new Y-coordinate for the centre of the card
+        :param theta: new angle for the card
+        :param scale: new scale for the card
+        :return: none
+        """
+        if x is None:
+            x = -len(card.img[0]) / 2
+        if y is None:
+            y = -len(card.img) / 2
+        self.cards.append(card)
+        card.x = x
+        card.y = y
+        card.theta = theta
+        card.scale = scale
+        pass
+
+    def render(self, visibility=0.5, display=False, debug=False, aug=None):
+        """
+        Display the current state of the generator
+        :return: none
+        """
+        self.check_visibility(visibility=visibility)
+        #img_result = cv2.resize(self.img_bg, (self.width, self.height))
+        img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8)
+
+        for card in self.cards:
+            if card.x == 0.0 and card.y == 0.0 and card.theta == 0.0 and card.scale == 1.0:
+                continue
+            card_x = int(card.x + 0.5)
+            card_y = int(card.y + 0.5)
+            #print(card_x, card_y, card.theta, card.scale)
+
+            # Scale & rotate card image
+            img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale)))
+            if aug is not None:
+                seq = iaa.Sequential([
+                    iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(128)), size_px_max=[1, 3],
+                                          upscale_method="cubic"),  # Lighting
+                ])
+                img_card = seq.augment_image(img_card)
+            mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale)))
+            img_mask = cv2.bitwise_and(img_card, mask_scale)
+            img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180)
+            
+            # Calculate the position of the card image in relation to the background
+            # Crop the card image if it's out of boundary
+            card_w = len(img_rotate[0])
+            card_h = len(img_rotate)
+            card_crop_x1 = max(0, card_w // 2 - card_x)
+            card_crop_x2 = min(card_w, card_w // 2 + len(img_result[0]) - card_x)
+            card_crop_y1 = max(0, card_h // 2 - card_y)
+            card_crop_y2 = min(card_h, card_h // 2 + len(img_result) - card_y)
+            img_card_crop = img_rotate[card_crop_y1:card_crop_y2, card_crop_x1:card_crop_x2]
+
+            # Calculate the position of the corresponding area in the background
+            bg_crop_x1 = max(0, card_x - (card_w // 2))
+            bg_crop_x2 = min(len(img_result[0]), int(card_x + (card_w / 2) + 0.5))
+            bg_crop_y1 = max(0, card_y - (card_h // 2))
+            bg_crop_y2 = min(len(img_result), int(card_y + (card_h / 2) + 0.5))
+            img_result_crop = img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2]
+
+            # Override the background with the current card
+            img_result_crop = np.where(img_card_crop, img_card_crop, img_result_crop)
+            img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_result_crop
+            
+            if debug:
+                for ext_obj in card.objects:
+                    if ext_obj.visible:
+                        for pt in ext_obj.key_pts:
+                            cv2.circle(img_result, card.coordinate_in_generator(pt[0], pt[1]), 2, (1, 1, 255), 10)
+                        bounding_box = card.bb_in_generator(ext_obj.key_pts)
+                        cv2.rectangle(img_result, bounding_box[0], bounding_box[2], (1, 255, 1), 5)
+
+        '''
+        try:
+            text = pytesseract.image_to_string(img_result, output_type=pytesseract.Output.DICT)
+            print(text)
+        except pytesseract.pytesseract.TesseractError:
+            pass
+        '''
+        img_result = cv2.GaussianBlur(img_result, (5, 5), 0)
+
+        if self.M is not None:
+            img_result = cv2.warpPerspective(img_result, self.M, (self.width, self.height))
+            if debug:
+                for card in self.cards:
+                    for ext_obj in card.objects:
+                        if ext_obj.visible:
+                            new_pts = np.array([[list(card.coordinate_in_generator(pt[0], pt[1]))]
+                                                for pt in ext_obj.key_pts], dtype=np.float32)
+                            new_pts = cv2.perspectiveTransform(new_pts, self.M)
+                            for pt in new_pts:
+                                cv2.circle(img_result, (pt[0][0], pt[0][1]), 2, (255, 1, 1), 10)
+
+        img_bg = cv2.resize(self.img_bg, (self.width, self.height))
+        img_result = np.where(img_result, img_result, img_bg)
+
+        if aug is not None:
+            img_result = aug.augment_image(img_result)
+
+        if display:
+            cv2.imshow('Result', img_result)
+            cv2.waitKey(0)
+
+        self.img_result = img_result
+        pass
+
+    def generate_horizontal_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
+        """
+        Generating the first scenario where the cards are laid out in a straight horizontal line
+        :return: True if successfully generated, otherwise False
+        """
+        # Set scale of the cards, variance of shift & jitter to be applied if they're not given
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Scale the cards so that card takes about 50% of the image's height
+            coverage_ratio = 0.5
+            scale = self.height * coverage_ratio / card_size[1]
+        if shift is None:
+            # Plus minus 5% of the card's height
+            shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
+            pass
+        if jitter is None:
+            jitter = [-math.pi / 18, math.pi / 18]  # Plus minus 10 degrees
+        if gap is None:
+            # 25% of the card's width - set symbol and 1-2 mana symbols will be visible on each card
+            gap = card_size[0] * scale * 0.4
+
+        # Determine the location of the first card
+        # The cards will cover (width of a card + (# of cards - 1) * gap) pixels wide and (height of a card) pixels high
+        x_anchor = int(self.width / 2 + (len(self.cards) - 1) * gap / 2)
+        y_anchor = self.height // 2
+        for card in self.cards:
+            card.scale = scale
+            card.x = x_anchor
+            card.y = y_anchor
+            card.theta = 0
+            card.shift(shift, shift)
+            card.rotate(jitter)
+            card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
+            x_anchor -= gap
+
+        return True
+
+    def generate_vertical_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
+        """
+        Generating the second scenario where the cards are laid out in a straight vertical line
+        :return: True if successfully generated, otherwise False
+        """
+        # Set scale of the cards, variance of shift & jitter to be applied if they're not given
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Scale the cards so that card takes about 50% of the image's height
+            coverage_ratio = 0.5
+            scale = self.height * coverage_ratio / card_size[1]
+        if shift is None:
+            # Plus minus 5% of the card's height
+            shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
+            pass
+        if jitter is None:
+            # Plus minus 5 degrees
+            jitter = [-math.pi / 36, math.pi / 36]
+        if gap is None:
+            # 15% of the card's height - the title bar (with mana symbols) will be visible
+            gap = card_size[1] * scale * 0.25
+
+        # Determine the location of the first card
+        # The cards will cover (width of a card) pixels wide and (height of a card + (# of cards - 1) * gap) pixels high
+        x_anchor = self.width // 2
+        y_anchor = int(self.height / 2 - (len(self.cards) - 1) * gap / 2)
+        for card in self.cards:
+            card.scale = scale
+            card.x = x_anchor
+            card.y = y_anchor
+            card.theta = 0
+            card.shift(shift, shift)
+            card.rotate(jitter)
+            card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
+            y_anchor += gap
+        return True
+
+    def generate_fan_out(self, centre, theta_between_cards=None, scale=None, shift=None, jitter=None):
+        """
+        Generating the third scenario where the cards are laid out in a fan shape
+        :return: True if successfully generated, otherwise False
+        """
+        return False
+
+    def generate_non_obstructive(self, tolerance=0.90, scale=None):
+        """
+        Generating the fourth scenario where the cards are laid in arbitrary position that doesn't obstruct other cards
+        :param tolerance: minimum level of visibility for each cards
+        :return: True if successfully generated, otherwise False
+        """
+        card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
+        if scale is None:
+            # Total area of the cards should cover about 25-40% of the entire image, depending on the number of cards
+            scale = math.sqrt(self.width * self.height * min(0.25 + 0.02 * len(self.cards), 0.4)
+                              / (card_size[0] * card_size[1] * len(self.cards)))
+        # Position each card at random location that doesn't obstruct other cards
+        i = 0
+        while i < len(self.cards):
+        #for i in range(len(self.cards)):
+            card = self.cards[i]
+            card.scale = scale
+            rep = 0
+            while True:
+                card.x = random.uniform(card_size[1] * scale / 2, self.width - card_size[1] * scale)
+                card.y = random.uniform(card_size[1] * scale / 2, self.height - card_size[1] * scale)
+                card.theta = random.uniform(-math.pi, math.pi)
+                self.check_visibility(self.cards[:i + 1], visibility=tolerance)
+                # This position is not obstructive if all of the cards are visible
+                is_visible = [other_card.objects[0].visible for other_card in self.cards[:i + 1]]
+                non_obstructive = all(is_visible)
+                if non_obstructive:
+                    i += 1
+                    break
+                rep += 1
+                if rep >= 1000:
+                    # Reassign previous card's position
+                    i -= 1
+                    break
+        return True
+
+    def check_visibility(self, cards=None, i_check=None, visibility=0.5):
+        """
+        Check whether if extracted objects in each card are visible in the current scenario, and update their status
+        :param cards: list of cards (in a correct order)
+        :param i_check: indices of cards that needs to be checked. Cards that aren't in this list will only be used
+        to check visibility of other cards. All cards are checked by default.
+        :param visibility: minimum ratio of the object's area that aren't covered by another card to be visible
+        :return: none
+        """
+        if cards is None:
+            cards = self.cards
+        if i_check is None:
+            i_check = range(len(cards))
+        card_poly_list = [geometry.Polygon([card.coordinate_in_generator(0, 0),
+                                            card.coordinate_in_generator(0, len(card.img)),
+                                            card.coordinate_in_generator(len(card.img[0]), len(card.img)),
+                                            card.coordinate_in_generator(len(card.img[0]), 0)]) for card in self.cards]
+        template_poly = geometry.Polygon([(0, 0), (self.width, 0), (self.width, self.height), (0, self.height)])
+
+        # First card in the list is overlaid on the bottom of the card pile
+        for i in i_check:
+            card = cards[i]
+            for ext_obj in card.objects:
+                obj_poly = geometry.Polygon([card.coordinate_in_generator(pt[0], pt[1]) for pt in ext_obj.key_pts])
+                obj_area = obj_poly.area
+                # Check if the other cards are blocking this object or if it's out of the template
+                for card_poly in card_poly_list[i + 1:]:
+                    obj_poly = obj_poly.difference(card_poly)
+                obj_poly = obj_poly.intersection(template_poly)
+                visible_area = obj_poly.area
+                #print(visible_area, obj_area, len(card.img[0]) * len(card.img) * card.scale * card.scale)
+                #print("%s: %.1f visible" % (ext_obj.label, visible_area / obj_area * 100))
+                ext_obj.visible = obj_area * visibility <= visible_area
+
+    def export_training_data(self, out_name, visibility=0.5, aug=None):
+        """
+        Export the generated training image along with the txt file for all bounding boxes
+        :return: none
+        """
+        self.render(visibility, aug=aug)
+        cv2.imwrite(out_name + '.jpg', self.img_result)
+        out_txt = open(out_name+ '.txt', 'w')
+        for card in self.cards:
+            for ext_obj in card.objects:
+                if not ext_obj.visible:
+                    continue
+                coords_in_gen = [card.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in ext_obj.key_pts]
+                obj_yolo_info = key_pts_to_yolo(coords_in_gen, self.width, self.height)
+                if ext_obj.label == 'card':
+                    class_id = self.class_ids[card.info['name']]
+                    out_txt.write(str(class_id) + ' %.6f %.6f %.6f %.6f\n' % obj_yolo_info)
+                    pass
+                elif ext_obj.label[:ext_obj.label.find[':']] == 'mana_symbol':
+                    # TODO
+                    pass
+                elif ext_obj.label[:ext_obj.label.find[':']] == 'set_symbol':
+                    # TODO
+                    pass
+        out_txt.close()
+        pass
+
+
+class Card:
+    """
+    A class for storing required information about a card in relation to the ImageGenerator
+    """
+    def __init__(self, img, card_info, objects, x=None, y=None, theta=None, scale=None):
+        """
+        :param img: image of the card
+        :param card_info: details like name, mana cost, type, set, etc
+        :param objects: list of ExtractedObjects like mana & set symbol, etc
+        :param generator: ImageGenerator object that the card is bound to
+        :param x: X-coordinate of the card's centre in relation to the generator
+        :param y: Y-coordinate of the card's centre in relation to the generator
+        :param theta: angle of rotation of the card in relation to the generator
+        :param scale: scale of the card in the generator in relation to the original image
+        """
+        self.img = img
+        self.info = card_info
+        self.objects = objects
+        self.x = x
+        self.y = y
+        self.theta = theta
+        self.scale = scale
+        pass
+
+    def shift(self, x, y):
+        """
+        Apply a X/Y translation on this image
+        :param x: amount of X-translation. If range is given, translate by a random amount within that range
+        :param y: amount of Y-translation. Refer to x when a range is given.
+        :return: none
+        """
+        if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2):
+            self.x += random.uniform(x[0], x[1])
+        else:
+            self.x += x
+        if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2):
+            self.y += random.uniform(y[0], y[1])
+        else:
+            self.y += y
+        pass
+
+    def rotate(self, theta, centre=(0, 0)):
+        """
+        Apply a rotation on this image with a centre
+        :param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within
+        :param centre: coordinate of the centre of the rotation in relation to the centre of this card
+        that range
+        :return: none
+        """
+        if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2):
+            theta = random.uniform(theta[0], theta[1])
+
+        # If the centre given is the centre of this card, the whole math simplifies a bit
+        # (This still works without the if statement, but let's not do useless trigs if we know the answer already)
+        if centre is not (0, 0):
+            # Rotation math
+            self.x -= -centre[1] * math.sin(theta) + centre[0] * math.cos(theta)
+            self.y -= centre[1] * math.cos(theta) + centre[0] * math.sin(theta)
+
+            # Offset for the coordinate translation
+            self.x += centre[0]
+            self.y += centre[1]
+
+        self.theta += theta
+        pass
+
+    def coordinate_in_generator(self, x, y):
+        """
+        Converting coordinate within the card into the coordinate in the generator it is associated with
+        :param x: x coordinate within the card
+        :param y: y coordinate within the card
+        :return: (x, y) coordinate in the generator
+        """
+        # Relative distance in X & Y axis, if the centre of the card is at the origin (0, 0)
+        rel_x = x - len(self.img[0]) // 2
+        rel_y = y - len(self.img) // 2
+
+        # Scaling
+        rel_x *= self.scale
+        rel_y *= self.scale
+
+        # Rotation
+        rot_x = rel_x - rel_y * math.sin(self.theta) + rel_x * math.cos(self.theta)
+        rot_y = rel_y + rel_y * math.cos(self.theta) + rel_x * math.sin(self.theta)
+
+        # Negate offset
+        rot_x -= rel_x
+        rot_y -= rel_y
+
+        # Shift
+        gen_x = rot_x + self.x
+        gen_y = rot_y + self.y
+
+        return int(gen_x), int(gen_y)
+
+    def bb_in_generator(self, key_pts):
+        """
+        Convert a keypoints of bounding box in card into the coordinate in the generator
+        :param key_pts: keypoints of the bounding box
+        :return: bounding box represented by 4 points in the generator
+        """
+        coords_in_gen = [self.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in key_pts]
+        x1 = min([pt[0] for pt in coords_in_gen])
+        x2 = max([pt[0] for pt in coords_in_gen])
+        y1 = min([pt[1] for pt in coords_in_gen])
+        y2 = max([pt[1] for pt in coords_in_gen])
+        '''
+        x1 = -math.inf
+        x2 = math.inf
+        y1 = -math.inf
+        y2 = math.inf
+        for key_pt in key_pts:
+            coord_in_gen = self.coordinate_in_generator(key_pt[0], key_pt[1])
+            x1 = max(x1, coord_in_gen[0])
+            x2 = min(x2, coord_in_gen[0])
+            y1 = max(y1, coord_in_gen[1])
+            y2 = min(y2, coord_in_gen[1])
+        '''
+        return [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
+
+
+class ExtractedObject:
+    """
+    Simple struct to hold information about an extracted object
+    """
+    def __init__(self, label, key_pts):
+        self.label = label
+        self.key_pts = key_pts
+        self.visible = False
+
+
+def main():
+    random.seed()
+    ia.seed(random.randrange(10000))
+
+    bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False)
+    #bg_images = [cv2.imread('data/frilly_0007.jpg')]
+    background = generate_data.Backgrounds(images=bg_images)
+
+    #card_pool = pd.DataFrame()
+    #for set_name in fetch_data.all_set_list:
+    #    df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name))
+    #    card_pool = card_pool.append(df)
+    card_pool = fetch_data.load_all_cards_text('%s/csv/custom.csv' % data_dir)
+    class_ids = {}
+    with open('%s/obj.names' % data_dir) as names_file:
+        class_name_list = names_file.read().splitlines()
+        for i in range(len(class_name_list)):
+            class_ids[class_name_list[i]] = i
+    print(class_ids)
+
+    num_gen = 60000
+    num_iter = 1
+
+    for i in range(num_gen):
+        # Arbitrarily select top left and right corners for perspective transformation
+        # Since the training image are generated with random rotation, don't need to skew all four sides
+        skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1],
+                [random.uniform(0.75, 1), 0]]
+        generator = ImageGenerator(background.get_random(), class_ids, 1440, 960, skew=skew)
+        out_name = ''
+        for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows():
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'],
+                                                         fetch_data.get_valid_filename(card_info['name']))
+            out_name += '%s%s_' % (card_info['set'], card_info['collector_number'])
+            card_img = cv2.imread(img_name)
+            if card_img is None:
+                fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set']))
+                card_img = cv2.imread(img_name)
+            if card_img is None:
+                print('WARNING: card %s is not found!' % img_name)
+            detected_object_list = generate_data.apply_bounding_box(card_img, card_info)
+            card = Card(card_img, card_info, detected_object_list)
+            generator.add_card(card)
+        for j in range(num_iter):
+            seq = iaa.Sequential([
+                iaa.Multiply((0.8, 1.2)),  # darken / brighten the whole image
+                iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6],
+                                      upscale_method="cubic"),  # Lighting
+                iaa.AdditiveGaussianNoise(scale=random.uniform(0, 0.05) * 255, per_channel=0.1),  # Noises
+                iaa.Dropout(p=[0, 0.05], per_channel=0.1)
+            ])
+
+            if i % 3 == 0:
+                generator.generate_non_obstructive()
+                generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+            elif i % 3 == 1:
+                generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
+                generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+            else:
+                generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi))
+                generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_10/%s%d'
+                                                                        % (data_dir, out_name, j), aug=seq)
+
+            #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
+            #generator.render(display=True, aug=seq, debug=True)
+            print('Generated %s%d' % (out_name, j))
+            generator.img_bg = background.get_random()
+    pass
+
+
+if __name__ == '__main__':
+    main()

--
Gitblit v1.10.0