From 0df9d25c46e39fa5f532c023261784fdcdd5d25d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:51:17 +0000
Subject: [PATCH] new cfg files for classification

---
 src/detection.c |  236 +++++++++++++++++++++++++++++++++++++---------------------
 1 files changed, 149 insertions(+), 87 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index fa8b38c..e21e120 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -1,11 +1,13 @@
 #include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
 #include "utils.h"
 #include "parser.h"
 
 
 char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
+
+void draw_detection(image im, float *box, int side, char *label)
 {
     int classes = 20;
     int elems = 4+classes;
@@ -15,76 +17,100 @@
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
-            //printf("%d\n", j);
-            //printf("Prob: %f\n", box[j]);
             int class = max_index(box+j, classes);
-            if(box[j+class] > .02 || 1){
-                //int z;
-                //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
+            if(box[j+class] > 0.2){
                 printf("%f %s\n", box[j+class], class_names[class]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
                 float blue = get_color(2,class,classes);
 
                 j += classes;
-                int d = im.w/side;
-                int y = r*d+box[j]*d;
-                int x = c*d+box[j+1]*d;
-                int h = box[j+2]*im.h;
-                int w = box[j+3]*im.w;
-                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
+                float x = box[j+0];
+                float y = box[j+1];
+                x = (x+c)/side;
+                y = (y+r)/side;
+                float w = box[j+2]; //*maxwidth;
+                float h = box[j+3]; //*maxheight;
+                h = h*h;
+                w = w*w;
+
+                int left  = (x-w/2)*im.w;
+                int right = (x+w/2)*im.w;
+                int top   = (y-h/2)*im.h;
+                int bot   = (y+h/2)*im.h;
+                draw_box(im, left, top, right, bot, red, green, blue);
+                draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
+                draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
             }
         }
     }
-    //printf("Done\n");
-    show_image(im, "box");
-    cvWaitKey(0);
+    show_image(im, label);
 }
 
 void train_detection(char *cfgfile, char *weightfile)
 {
+    srand(time(0));
+    data_seed = time(0);
+    int imgnet = 0;
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
-    float avg_loss = 1;
+    float avg_loss = -1;
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    detection_layer layer = get_network_detection_layer(net);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
-    srand(time(0));
-    //srand(23410);
     int i = net.seen/imgs;
-    list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
     data train, buffer;
-    int im_dim = 512;
-    int jitter = 64;
-    int classes = 21;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+
+    int classes = layer.classes;
+    int background = (layer.background || layer.objectness);
+    printf("%d\n", background);
+    int side = sqrt(get_detection_layer_locations(layer));
+
+    char **paths;
+    list *plist;
+    if (imgnet){
+        plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
+    }else{
+        //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
+        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
+        //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
+        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
+        //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
+        plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
+    }
+    paths = (char **)list_to_array(plist);
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
 
-        /*
-           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
-           draw_detection(im, train.y.vals[0], 7);
-           show_image(im, "truth");
+/*
+           image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
+           image copy = copy_image(im);
+           draw_detection(copy, train.y.vals[114], 7, "truth");
            cvWaitKey(0);
-         */
+           free_image(copy);
+           */
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
         net.seen += imgs;
+        if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%100==0){
+        if(i == 100){
+            net.learning_rate *= 10;
+        }
+        if(i%1000==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
             save_weights(net, buff);
@@ -93,95 +119,130 @@
     }
 }
 
+void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box)
+{
+    matrix pred = network_predict_data(net, d);
+    int j, k, class;
+    for(j = 0; j < pred.rows; ++j){
+        for(k = 0; k < pred.cols; k += per_box){
+            float scale = 1.;
+            int index = k/per_box;
+            int row = index / num_boxes;
+            int col = index % num_boxes;
+            if (objectness) scale = 1.-pred.vals[j][k];
+            for (class = 0; class < classes; ++class){
+                int ci = k+classes+(background || objectness);
+                float x = (pred.vals[j][ci + 0] + col)/num_boxes;
+                float y = (pred.vals[j][ci + 1] + row)/num_boxes;
+                float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes);
+                float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes);
+                w = pow(w, 2);
+                h = pow(h, 2);
+                float prob = scale*pred.vals[j][k+class+(background || objectness)];
+                if(prob < threshold) continue;
+                printf("%d %d %f %f %f %f %f\n", offset +  j, class, prob, x, y, w, h);
+            }
+        }
+    }
+    free_matrix(pred);
+}
+
 void validate_detection(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    detection_layer layer = get_network_detection_layer(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
+    list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
     char **paths = (char **)list_to_array(plist);
-    int num_output = 1225;
-    int im_size = 448;
-    int classes = 21;
+
+    int classes = layer.classes;
+    int objectness = layer.objectness;
+    int background = layer.background;
+    int num_boxes = sqrt(get_detection_layer_locations(layer));
+
+    int per_box = 4+classes+(background || objectness);
+    int num_output = num_boxes*num_boxes*per_box;
 
     int m = plist->size;
     int i = 0;
     int splits = 100;
-    int num = (i+1)*m/splits - i*m/splits;
 
-    fprintf(stderr, "%d\n", m);
-    data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
-    clock_t time;
-    for(i = 1; i <= splits; ++i){
-        time=clock();
-        pthread_join(load_thread, 0);
-        val = buffer;
+    int nthreads = 4;
+    int t;
+    data *val = calloc(nthreads, sizeof(data));
+    data *buf = calloc(nthreads, sizeof(data));
+    pthread_t *thr = calloc(nthreads, sizeof(data));
 
-        num = (i+1)*m/splits - i*m/splits;
-        char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
+    time_t start = time(0);
 
-        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
-        matrix pred = network_predict_data(net, val);
-        int j, k, class;
-        for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += classes+4){
+    for(t = 0; t < nthreads; ++t){
+        int num = (i+1+t)*m/splits - (i+t)*m/splits;
+        char **part = paths+((i+t)*m/splits);
+        thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+    }
 
-                /*
-                   int z;
-                   for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
-                   printf("\n");
-                 */
-
-                //if (pred.vals[j][k] > .001){
-                for(class = 0; class < classes-1; ++class){
-                    int index = (k)/(classes+4); 
-                    int r = index/7;
-                    int c = index%7;
-                    float y = (r + pred.vals[j][k+0+classes])/7.;
-                    float x = (c + pred.vals[j][k+1+classes])/7.;
-                    float h = pred.vals[j][k+2+classes];
-                    float w = pred.vals[j][k+3+classes];
-                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
-                }
-                //}
-            }
+    for(i = nthreads; i <= splits; i += nthreads){
+        for(t = 0; t < nthreads; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+        }
+        for(t = 0; t < nthreads && i < splits; ++t){
+            int num = (i+1+t)*m/splits - (i+t)*m/splits;
+            char **part = paths+((i+t)*m/splits);
+            thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
         }
 
-        time=clock();
-        free_data(val);
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads; ++t){
+            predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box);
+            free_data(val[t]);
+        }
     }
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
-void test_detection(char *cfgfile, char *weightfile)
+void test_detection(char *cfgfile, char *weightfile, char *filename)
 {
+
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    detection_layer layer = get_network_detection_layer(net);
+    if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
     int im_size = 448;
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
-    char filename[256];
+    char input[256];
     while(1){
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename, im_size, im_size);
-        translate_image(im, -128);
-        scale_image(im, 1/128.);
-        printf("%d %d %d\n", im.h, im.w, im.c);
-        float *X = im.data;
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            fgets(input, 256, stdin);
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
+        image sized = resize_image(im, im_size, im_size);
+        float *X = sized.data;
         time=clock();
         float *predictions = network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
-        draw_detection(im, predictions, 7);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        draw_detection(im, predictions, 7, "predictions");
         free_image(im);
+        free_image(sized);
+#ifdef OPENCV
+        cvWaitKey(0);
+        cvDestroyAllWindows();
+#endif
+        if (filename) break;
     }
 }
 
@@ -194,7 +255,8 @@
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
 }

--
Gitblit v1.10.0