From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!
---
src/network.c | 61 +++
src/deconvolutional_kernels.cu | 104 ++++++
src/col2im_kernels.cu | 8
src/maxpool_layer.h | 2
src/normalization_layer.c | 7
src/normalization_layer.h | 2
src/network.h | 1
Makefile | 4
src/dropout_layer.h | 1
src/network_kernels.cu | 26 +
src/data.c | 60 ++-
src/deconvolutional_layer.c | 200 +++++++++++++
src/convolutional_layer.h | 2
src/data.h | 6
src/im2col_kernels.cu | 14
src/im2col.h | 2
src/convolutional_layer.c | 14
src/deconvolutional_layer.h | 65 ++++
src/parser.c | 123 ++++++++
src/col2im.h | 2
src/convolutional_kernels.cu | 6
src/darknet.c | 121 +++++--
src/dropout_layer.c | 13
src/maxpool_layer.c | 17
24 files changed, 745 insertions(+), 116 deletions(-)
diff --git a/Makefile b/Makefile
index 879ff8e..6e7ecf7 100644
--- a/Makefile
+++ b/Makefile
@@ -25,9 +25,9 @@
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
endif
-OBJ=gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o
ifeq ($(GPU), 1)
-OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
+OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
diff --git a/src/col2im.h b/src/col2im.h
index 2fdc427..0237497 100644
--- a/src/col2im.h
+++ b/src/col2im.h
@@ -6,7 +6,7 @@
int ksize, int stride, int pad, float* data_im);
#ifdef GPU
-void col2im_ongpu(float *data_col, int batch,
+void col2im_ongpu(float *data_col,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_im);
#endif
diff --git a/src/col2im_kernels.cu b/src/col2im_kernels.cu
index 73de9b7..2fa2030 100644
--- a/src/col2im_kernels.cu
+++ b/src/col2im_kernels.cu
@@ -3,7 +3,7 @@
#include "cuda.h"
}
-__global__ void col2im_kernel(float *data_col, int offset,
+__global__ void col2im_kernel(float *data_col,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_im)
{
@@ -46,17 +46,17 @@
val += part;
}
}
- data_im[index+offset] = val;
+ data_im[index] = val;
}
-extern "C" void col2im_ongpu(float *data_col, int offset,
+extern "C" void col2im_ongpu(float *data_col,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_im)
{
size_t n = channels*height*width;
- col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, offset, channels, height, width, ksize, stride, pad, data_im);
+ col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, channels, height, width, ksize, stride, pad, data_im);
check_error(cudaPeekAtLastError());
}
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index fcf2466..bcf307f 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -65,7 +65,7 @@
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
for(i = 0; i < layer.batch; ++i){
- im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
+ im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
float * a = layer.filters_gpu;
float * b = layer.col_image_gpu;
float * c = layer.output_gpu;
@@ -93,7 +93,7 @@
float * b = layer.col_image_gpu;
float * c = layer.filter_updates_gpu;
- im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
+ im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
if(delta_gpu){
@@ -104,7 +104,7 @@
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
- col2im_ongpu(layer.col_image_gpu, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu);
+ col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w);
}
}
}
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 2e25844..7782e3d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -44,7 +44,6 @@
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
{
int i;
- size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
layer->learning_rate = learning_rate;
@@ -95,11 +94,10 @@
return layer;
}
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
{
layer->h = h;
layer->w = w;
- layer->c = c;
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
@@ -109,6 +107,16 @@
layer->batch*out_h * out_w * layer->n*sizeof(float));
layer->delta = realloc(layer->delta,
layer->batch*out_h * out_w * layer->n*sizeof(float));
+
+ #ifdef GPU
+ cuda_free(layer->col_image_gpu);
+ cuda_free(layer->delta_gpu);
+ cuda_free(layer->output_gpu);
+
+ layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+ layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+ layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+ #endif
}
void bias_output(float *output, float *biases, int batch, int n, int size)
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index dcc48bb..72f3f72 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -54,7 +54,7 @@
#endif
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
void forward_convolutional_layer(const convolutional_layer layer, float *in);
void update_convolutional_layer(convolutional_layer layer);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
diff --git a/src/darknet.c b/src/darknet.c
index 0b93aa6..92a9196 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -57,8 +57,8 @@
int d = im.w/side;
int y = r*d+box[j+1]*d;
int x = c*d+box[j+2]*d;
- int h = box[j+3]*256;
- int w = box[j+4]*256;
+ int h = box[j+3]*im.h;
+ int w = box[j+4]*im.w;
//printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
//printf("%d %d %d %d\n", x, y, w, h);
//printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
@@ -70,54 +70,79 @@
cvWaitKey(0);
}
-
-void train_detection_net(char *cfgfile)
+char *basename(char *cfgfile)
{
+ char *c = cfgfile;
+ char *next;
+ while((next = strchr(c, '/')))
+ {
+ c = next+1;
+ }
+ c = copy_string(c);
+ next = strchr(c, '_');
+ if (next) *next = 0;
+ next = strchr(c, '.');
+ if (next) *next = 0;
+ return c;
+}
+
+void train_detection_net(char *cfgfile, char *weightfile)
+{
+ char *base = basename(cfgfile);
+ printf("%s\n", base);
float avg_loss = 1;
- //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 1024;
+ int imgs = 128;
srand(time(0));
//srand(23410);
- int i = 0;
- list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
+ int i = net.seen/imgs;
+ list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
data train, buffer;
- pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+ int im_dim = 512;
+ int jitter = 64;
+ pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
- load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
- //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+ load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
-/*
- image im = float_to_image(224, 224, 3, train.X.vals[923]);
+ /*
+ image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]);
draw_detection(im, train.y.vals[923], 7);
+ show_image(im, "truth");
+ cvWaitKey(0);
*/
- normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
+ net.seen += imgs;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){
char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
- save_network(net, buff);
+ sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+ save_weights(net, buff);
}
free_data(train);
}
}
-void validate_detection_net(char *cfgfile)
+void validate_detection_net(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
@@ -137,7 +162,6 @@
time=clock();
pthread_join(load_thread, 0);
val = buffer;
- normalize_data_rows(val);
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
@@ -206,20 +230,13 @@
}
*/
-char *basename(char *cfgfile)
+void convert(char *cfgfile, char *outfile, char *weightfile)
{
- char *c = cfgfile;
- char *next;
- while((next = strchr(c, '/')))
- {
- c = next+1;
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
}
- c = copy_string(c);
- next = strchr(c, '_');
- if (next) *next = 0;
- next = strchr(c, '.');
- if (next) *next = 0;
- return c;
+ save_network(net, outfile);
}
void train_imagenet(char *cfgfile, char *weightfile)
@@ -232,8 +249,6 @@
if(weightfile){
load_weights(&net, weightfile);
}
- //test_learn_bias(*(convolutional_layer *)net.layers[1]);
- //set_learning_network(&net, net.learning_rate, 0, net.decay);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
@@ -279,7 +294,7 @@
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
- list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
+ list *plist = get_paths("/data/imagenet/cls.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
@@ -312,9 +327,12 @@
}
}
-void test_detection(char *cfgfile)
+void test_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
@@ -323,7 +341,8 @@
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 224, 224);
- z_normalize_image(im);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
@@ -386,6 +405,30 @@
cvWaitKey(0);
}
+void test_voc_segment(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ while(1){
+ char filename[256];
+ fgets(filename, 256, stdin);
+ strtok(filename, "\n");
+ image im = load_image_color(filename, 500, 500);
+ //resize_network(net, im.h, im.w, im.c);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ //float *predictions = network_predict(net, im.data);
+ network_predict(net, im.data);
+ free_image(im);
+ image output = get_network_image_layer(net, net.n-2);
+ show_image(output, "Segment Output");
+ cvWaitKey(0);
+ }
+}
+
void test_imagenet(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
@@ -764,25 +807,27 @@
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
return 0;
}
- else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+ else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
+ else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
- else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
+ else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
- else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+ else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2], (argc > 3)? argv[3] : 0);
else if(argc < 4){
fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
return 0;
}
else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
+ else if(0==strcmp(argv[1], "convert")) convert(argv[2], argv[3], (argc > 4)? argv[4] : 0);
else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
fprintf(stderr, "Success!\n");
return 0;
diff --git a/src/data.c b/src/data.c
index 3a37411..fd6b722 100644
--- a/src/data.c
+++ b/src/data.c
@@ -16,7 +16,7 @@
int w;
int nh;
int nw;
- float scale;
+ int jitter;
data *d;
};
@@ -33,16 +33,18 @@
return lines;
}
-void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale, int dx, int dy)
+void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, int dy, int dx, int jitter)
{
int box_height = height/num_height;
int box_width = width/num_width;
- char *labelpath = find_replace(path, "imgs", "det");
+ char *labelpath = find_replace(path, "imgs", "det/train");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
FILE *file = fopen(labelpath, "r");
if(!file) file_error(labelpath);
- int x, y, h, w;
- while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){
+ float x, y, h, w;
+ while(fscanf(file, "%f %f %f %f", &x, &y, &w, &h) == 4){
+ x *= width + jitter;
+ y *= height + jitter;
x -= dx;
y -= dy;
int i = x/box_width;
@@ -53,17 +55,15 @@
if(j < 0) j = 0;
if(j >= num_height) j = num_height-1;
- float dw = (float)(x%box_width)/box_height;
- float dh = (float)(y%box_width)/box_width;
- float sh = h/scale;
- float sw = w/scale;
+ float dw = (x - i*box_width)/box_width;
+ float dh = (y - j*box_height)/box_height;
//printf("%d %d %f %f\n", i, j, dh, dw);
int index = (i+j*num_width)*5;
truth[index++] = 1;
truth[index++] = dh;
truth[index++] = dw;
- truth[index++] = sh;
- truth[index++] = sw;
+ truth[index++] = h*(height+jitter)/height;
+ truth[index++] = w*(width+jitter)/width;
}
fclose(file);
}
@@ -120,13 +120,13 @@
return y;
}
-matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width, float scale)
+matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width)
{
int k = num_height*num_width*5;
matrix y = make_matrix(n, k);
int i;
for(i = 0; i < n; ++i){
- fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale,0,0);
+ fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, 0, 0, 0);
}
return y;
}
@@ -165,7 +165,7 @@
}
}
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
+data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter)
{
char **random_paths = get_random_paths(paths, n, m);
int i;
@@ -175,13 +175,13 @@
int k = nh*nw*5;
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
- int dx = rand()%32;
- int dy = rand()%32;
- fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy);
+ int dx = rand()%jitter;
+ int dy = rand()%jitter;
+ fill_truth_detection(random_paths[i], d.y.vals[i], h-jitter, w-jitter, nh, nw, dy, dx, jitter);
image a = float_to_image(h, w, 3, d.X.vals[i]);
- jitter_image(a,224,224,dy,dx);
+ jitter_image(a,h-jitter,w-jitter,dy,dx);
}
- d.X.cols = 224*224*3;
+ d.X.cols = (h-jitter)*(w-jitter)*3;
free(random_paths);
return d;
}
@@ -189,12 +189,14 @@
void *load_detection_thread(void *ptr)
{
struct load_args a = *(struct load_args*)ptr;
- *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.h, a.w, a.nh, a.nw, a.scale);
+ *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.h, a.w, a.nh, a.nw, a.jitter);
+ translate_data_rows(*a.d, -128);
+ scale_data_rows(*a.d, 1./128);
free(ptr);
return 0;
}
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, float scale, data *d)
+pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d)
{
pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args));
@@ -205,7 +207,7 @@
args->w = w;
args->nh = nh;
args->nw = nw;
- args->scale = scale;
+ args->jitter = jitter;
args->d = d;
if(pthread_create(&thread, 0, load_detection_thread, args)) {
error("Thread creation failed");
@@ -213,13 +215,13 @@
return thread;
}
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
+data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw)
{
char **random_paths = get_random_paths(paths, n, m);
data d;
d.shallow = 0;
d.X = load_image_paths(random_paths, n, h, w);
- d.y = load_labels_detection(random_paths, n, h, w, nh, nw, scale);
+ d.y = load_labels_detection(random_paths, n, h, w, nh, nw);
free(random_paths);
return d;
}
@@ -239,8 +241,8 @@
{
struct load_args a = *(struct load_args*)ptr;
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
- translate_data_rows(*a.d, -128);
- scale_data_rows(*a.d, 1./128);
+ translate_data_rows(*a.d, -128);
+ scale_data_rows(*a.d, 1./128);
free(ptr);
return 0;
}
@@ -301,9 +303,9 @@
X.vals[i][j] = (double)bytes[j+1];
}
}
- translate_data_rows(d, -144);
- scale_data_rows(d, 1./128);
- //normalize_data_rows(d);
+ translate_data_rows(d, -144);
+ scale_data_rows(d, 1./128);
+ //normalize_data_rows(d);
fclose(fp);
return d;
}
diff --git a/src/data.h b/src/data.h
index 367416e..13b62d8 100644
--- a/src/data.h
+++ b/src/data.h
@@ -17,10 +17,10 @@
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, float scale, data *d);
+pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d);
+data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter);
+data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw);
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
data load_cifar10_data(char *filename);
data load_all_cifar10();
diff --git a/src/deconvolutional_kernels.cu b/src/deconvolutional_kernels.cu
new file mode 100644
index 0000000..1d05a80
--- /dev/null
+++ b/src/deconvolutional_kernels.cu
@@ -0,0 +1,104 @@
+extern "C" {
+#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "gemm.h"
+#include "blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "utils.h"
+#include "cuda.h"
+}
+
+extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in)
+{
+ int i;
+ int out_h = deconvolutional_out_height(layer);
+ int out_w = deconvolutional_out_width(layer);
+ int size = out_h*out_w;
+
+ int m = layer.size*layer.size*layer.n;
+ int n = layer.h*layer.w;
+ int k = layer.c;
+
+ bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
+
+ for(i = 0; i < layer.batch; ++i){
+ float *a = layer.filters_gpu;
+ float *b = in + i*layer.c*layer.h*layer.w;
+ float *c = layer.col_image_gpu;
+
+ gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+ col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
+ }
+ activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
+}
+
+extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu)
+{
+ float alpha = 1./layer.batch;
+ int out_h = deconvolutional_out_height(layer);
+ int out_w = deconvolutional_out_width(layer);
+ int size = out_h*out_w;
+ int i;
+
+ gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
+ backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
+
+ if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+ for(i = 0; i < layer.batch; ++i){
+ int m = layer.c;
+ int n = layer.size*layer.size*layer.n;
+ int k = layer.h*layer.w;
+
+ float *a = in + i*m*n;
+ float *b = layer.col_image_gpu;
+ float *c = layer.filter_updates_gpu;
+
+ im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w,
+ layer.size, layer.stride, 0, b);
+ gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+ if(delta_gpu){
+ int m = layer.c;
+ int n = layer.h*layer.w;
+ int k = layer.size*layer.size*layer.n;
+
+ float *a = layer.filters_gpu;
+ float *b = layer.col_image_gpu;
+ float *c = delta_gpu + i*n*m;
+
+ gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ }
+ }
+}
+
+extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
+{
+ cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+ cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
+ cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+ cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
+{
+ cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+ cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
+ cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+ cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer)
+{
+ int size = layer.size*layer.size*layer.c*layer.n;
+
+ axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+ scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
+
+ axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+ axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+ scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
+}
+
diff --git a/src/deconvolutional_layer.c b/src/deconvolutional_layer.c
new file mode 100644
index 0000000..d4a8426
--- /dev/null
+++ b/src/deconvolutional_layer.c
@@ -0,0 +1,200 @@
+#include "deconvolutional_layer.h"
+#include "convolutional_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int deconvolutional_out_height(deconvolutional_layer layer)
+{
+ int h = layer.stride*(layer.h - 1) + layer.size;
+ return h;
+}
+
+int deconvolutional_out_width(deconvolutional_layer layer)
+{
+ int w = layer.stride*(layer.w - 1) + layer.size;
+ return w;
+}
+
+int deconvolutional_out_size(deconvolutional_layer layer)
+{
+ return deconvolutional_out_height(layer) * deconvolutional_out_width(layer);
+}
+
+image get_deconvolutional_image(deconvolutional_layer layer)
+{
+ int h,w,c;
+ h = deconvolutional_out_height(layer);
+ w = deconvolutional_out_width(layer);
+ c = layer.n;
+ return float_to_image(h,w,c,layer.output);
+}
+
+image get_deconvolutional_delta(deconvolutional_layer layer)
+{
+ int h,w,c;
+ h = deconvolutional_out_height(layer);
+ w = deconvolutional_out_width(layer);
+ c = layer.n;
+ return float_to_image(h,w,c,layer.delta);
+}
+
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay)
+{
+ int i;
+ deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
+
+ layer->learning_rate = learning_rate;
+ layer->momentum = momentum;
+ layer->decay = decay;
+
+ layer->h = h;
+ layer->w = w;
+ layer->c = c;
+ layer->n = n;
+ layer->batch = batch;
+ layer->stride = stride;
+ layer->size = size;
+
+ layer->filters = calloc(c*n*size*size, sizeof(float));
+ layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+
+ layer->biases = calloc(n, sizeof(float));
+ layer->bias_updates = calloc(n, sizeof(float));
+ float scale = 1./sqrt(size*size*c);
+ for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
+ for(i = 0; i < n; ++i){
+ layer->biases[i] = scale;
+ }
+ int out_h = deconvolutional_out_height(*layer);
+ int out_w = deconvolutional_out_width(*layer);
+
+ layer->col_image = calloc(h*w*size*size*n, sizeof(float));
+ layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+ layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
+ #ifdef GPU
+ layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
+ layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
+
+ layer->biases_gpu = cuda_make_array(layer->biases, n);
+ layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
+
+ layer->col_image_gpu = cuda_make_array(layer->col_image, h*w*size*size*n);
+ layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
+ layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
+ #endif
+
+ layer->activation = activation;
+
+ fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+ return layer;
+}
+
+void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w)
+{
+ layer->h = h;
+ layer->w = w;
+ int out_h = deconvolutional_out_height(*layer);
+ int out_w = deconvolutional_out_width(*layer);
+
+ layer->col_image = realloc(layer->col_image,
+ out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+ layer->output = realloc(layer->output,
+ layer->batch*out_h * out_w * layer->n*sizeof(float));
+ layer->delta = realloc(layer->delta,
+ layer->batch*out_h * out_w * layer->n*sizeof(float));
+ #ifdef GPU
+ cuda_free(layer->col_image_gpu);
+ cuda_free(layer->delta_gpu);
+ cuda_free(layer->output_gpu);
+
+ layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+ layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+ layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+ #endif
+}
+
+void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
+{
+ int i;
+ int out_h = deconvolutional_out_height(layer);
+ int out_w = deconvolutional_out_width(layer);
+ int size = out_h*out_w;
+
+ int m = layer.size*layer.size*layer.n;
+ int n = layer.h*layer.w;
+ int k = layer.c;
+
+ bias_output(layer.output, layer.biases, layer.batch, layer.n, size);
+
+ for(i = 0; i < layer.batch; ++i){
+ float *a = layer.filters;
+ float *b = in + i*layer.c*layer.h*layer.w;
+ float *c = layer.col_image;
+
+ gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+ col2im_cpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output+i*layer.n*size);
+ }
+ activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
+}
+
+void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta)
+{
+ float alpha = 1./layer.batch;
+ int out_h = deconvolutional_out_height(layer);
+ int out_w = deconvolutional_out_width(layer);
+ int size = out_h*out_w;
+ int i;
+
+ gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
+ backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
+
+ if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+ for(i = 0; i < layer.batch; ++i){
+ int m = layer.c;
+ int n = layer.size*layer.size*layer.n;
+ int k = layer.h*layer.w;
+
+ float *a = in + i*m*n;
+ float *b = layer.col_image;
+ float *c = layer.filter_updates;
+
+ im2col_cpu(layer.delta + i*layer.n*size, layer.n, out_h, out_w,
+ layer.size, layer.stride, 0, b);
+ gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+ if(delta){
+ int m = layer.c;
+ int n = layer.h*layer.w;
+ int k = layer.size*layer.size*layer.n;
+
+ float *a = layer.filters;
+ float *b = layer.col_image;
+ float *c = delta + i*n*m;
+
+ gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ }
+ }
+}
+
+void update_deconvolutional_layer(deconvolutional_layer layer)
+{
+ int size = layer.size*layer.size*layer.c*layer.n;
+ axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+ scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+
+ axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
+ axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
+ scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+}
+
+
+
diff --git a/src/deconvolutional_layer.h b/src/deconvolutional_layer.h
new file mode 100644
index 0000000..1da43dc
--- /dev/null
+++ b/src/deconvolutional_layer.h
@@ -0,0 +1,65 @@
+#ifndef DECONVOLUTIONAL_LAYER_H
+#define DECONVOLUTIONAL_LAYER_H
+
+#include "cuda.h"
+#include "image.h"
+#include "activations.h"
+
+typedef struct {
+ float learning_rate;
+ float momentum;
+ float decay;
+
+ int batch;
+ int h,w,c;
+ int n;
+ int size;
+ int stride;
+ float *filters;
+ float *filter_updates;
+
+ float *biases;
+ float *bias_updates;
+
+ float *col_image;
+ float *delta;
+ float *output;
+
+ #ifdef GPU
+ float * filters_gpu;
+ float * filter_updates_gpu;
+
+ float * biases_gpu;
+ float * bias_updates_gpu;
+
+ float * col_image_gpu;
+ float * delta_gpu;
+ float * output_gpu;
+ #endif
+
+ ACTIVATION activation;
+} deconvolutional_layer;
+
+#ifdef GPU
+void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in);
+void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in, float * delta_gpu);
+void update_deconvolutional_layer_gpu(deconvolutional_layer layer);
+void push_deconvolutional_layer(deconvolutional_layer layer);
+void pull_deconvolutional_layer(deconvolutional_layer layer);
+#endif
+
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay);
+void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
+void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in);
+void update_deconvolutional_layer(deconvolutional_layer layer);
+void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta);
+
+image get_deconvolutional_image(deconvolutional_layer layer);
+image get_deconvolutional_delta(deconvolutional_layer layer);
+image get_deconvolutional_filter(deconvolutional_layer layer, int i);
+
+int deconvolutional_out_height(deconvolutional_layer layer);
+int deconvolutional_out_width(deconvolutional_layer layer);
+
+#endif
+
diff --git a/src/dropout_layer.c b/src/dropout_layer.c
index 3a3e4cb..32a3408 100644
--- a/src/dropout_layer.c
+++ b/src/dropout_layer.c
@@ -21,6 +21,19 @@
return layer;
}
+void resize_dropout_layer(dropout_layer *layer, int inputs)
+{
+ layer->output = realloc(layer->output, layer->inputs*layer->batch*sizeof(float));
+ layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
+ #ifdef GPU
+ cuda_free(layer->output_gpu);
+ cuda_free(layer->rand_gpu);
+
+ layer->output_gpu = cuda_make_array(layer->output, inputs*layer->batch);
+ layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
+ #endif
+}
+
void forward_dropout_layer(dropout_layer layer, float *input)
{
int i;
diff --git a/src/dropout_layer.h b/src/dropout_layer.h
index 55b63ac..051ce47 100644
--- a/src/dropout_layer.h
+++ b/src/dropout_layer.h
@@ -18,6 +18,7 @@
void forward_dropout_layer(dropout_layer layer, float *input);
void backward_dropout_layer(dropout_layer layer, float *delta);
+void resize_dropout_layer(dropout_layer *layer, int inputs);
#ifdef GPU
void forward_dropout_layer_gpu(dropout_layer layer, float * input);
diff --git a/src/im2col.h b/src/im2col.h
index b939043..f0ddeee 100644
--- a/src/im2col.h
+++ b/src/im2col.h
@@ -7,7 +7,7 @@
#ifdef GPU
-void im2col_ongpu(float *im, int offset,
+void im2col_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad,float *data_col);
diff --git a/src/im2col_kernels.cu b/src/im2col_kernels.cu
index feaf44d..a82c2dc 100644
--- a/src/im2col_kernels.cu
+++ b/src/im2col_kernels.cu
@@ -3,7 +3,7 @@
#include "cuda.h"
}
-__global__ void im2col_pad_kernel(float *im, int offset,
+__global__ void im2col_pad_kernel(float *im,
int channels, int height, int width,
int ksize, int stride, float *data_col)
{
@@ -32,13 +32,13 @@
int im_row = h_offset + h * stride - pad;
int im_col = w_offset + w * stride - pad;
- int im_index = offset + im_col + width*(im_row + height*im_channel);
+ int im_index = im_col + width*(im_row + height*im_channel);
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}
-__global__ void im2col_nopad_kernel(float *im, int offset,
+__global__ void im2col_nopad_kernel(float *im,
int channels, int height, int width,
int ksize, int stride, float *data_col)
{
@@ -65,13 +65,13 @@
int im_row = h_offset + h * stride;
int im_col = w_offset + w * stride;
- int im_index = offset + im_col + width*(im_row + height*im_channel);
+ int im_index = im_col + width*(im_row + height*im_channel);
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}
-extern "C" void im2col_ongpu(float *im, int offset,
+extern "C" void im2col_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_col)
{
@@ -87,7 +87,7 @@
size_t n = channels_col*height_col*width_col;
- if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, offset, channels, height, width, ksize, stride, data_col);
- else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, offset, channels, height, width, ksize, stride, data_col);
+ if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
+ else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
check_error(cudaPeekAtLastError());
}
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index 834ebdb..ef7176d 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -40,13 +40,22 @@
return layer;
}
-void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w)
{
layer->h = h;
layer->w = w;
- layer->c = c;
- layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch* sizeof(float));
- layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch*sizeof(float));
+ int output_size = ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * layer->c * layer->batch;
+ layer->output = realloc(layer->output, output_size * sizeof(float));
+ layer->delta = realloc(layer->delta, output_size * sizeof(float));
+
+ #ifdef GPU
+ cuda_free((float *)layer->indexes_gpu);
+ cuda_free(layer->output_gpu);
+ cuda_free(layer->delta_gpu);
+ layer->indexes_gpu = cuda_make_int_array(output_size);
+ layer->output_gpu = cuda_make_array(layer->output, output_size);
+ layer->delta_gpu = cuda_make_array(layer->delta, output_size);
+ #endif
}
void forward_maxpool_layer(const maxpool_layer layer, float *input)
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 516bd31..89fb245 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -21,7 +21,7 @@
image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
-void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
void forward_maxpool_layer(const maxpool_layer layer, float *input);
void backward_maxpool_layer(const maxpool_layer layer, float *delta);
diff --git a/src/network.c b/src/network.c
index 2ec0881..bf0d63f 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
@@ -20,6 +21,8 @@
switch(a){
case CONVOLUTIONAL:
return "convolutional";
+ case DECONVOLUTIONAL:
+ return "deconvolutional";
case CONNECTED:
return "connected";
case MAXPOOL:
@@ -68,6 +71,11 @@
forward_convolutional_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ forward_deconvolutional_layer(layer, input);
+ input = layer.output;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input);
@@ -122,14 +130,9 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer);
}
- else if(net.types[i] == MAXPOOL){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == SOFTMAX){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- }
- else if(net.types[i] == NORMALIZATION){
- //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ update_deconvolutional_layer(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
@@ -143,6 +146,9 @@
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
@@ -178,6 +184,9 @@
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.delta;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta;
@@ -247,9 +256,13 @@
prev_input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1);
}
+
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer(layer, prev_input, prev_delta);
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ backward_deconvolutional_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -377,6 +390,9 @@
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
layer->batch = b;
+ }else if(net->types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+ layer->batch = b;
}
else if(net->types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net->layers[i];
@@ -415,6 +431,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
}
+ if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.h*layer.w*layer.c;
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.h*layer.w*layer.c;
@@ -448,6 +468,11 @@
image output = get_convolutional_image(layer);
return output.h*output.w*output.c;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ image output = get_deconvolutional_image(layer);
+ return output.h*output.w*output.c;
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
image output = get_maxpool_image(layer);
@@ -483,21 +508,31 @@
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
- resize_convolutional_layer(layer, h, w, c);
+ resize_convolutional_layer(layer, h, w);
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
+ } else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+ resize_deconvolutional_layer(layer, h, w);
+ image output = get_deconvolutional_image(*layer);
+ h = output.h;
+ w = output.w;
+ c = output.c;
}else if(net.types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
- resize_maxpool_layer(layer, h, w, c);
+ resize_maxpool_layer(layer, h, w);
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
+ }else if(net.types[i] == DROPOUT){
+ dropout_layer *layer = (dropout_layer *)net.layers[i];
+ resize_dropout_layer(layer, h*w*c);
}else if(net.types[i] == NORMALIZATION){
normalization_layer *layer = (normalization_layer *)net.layers[i];
- resize_normalization_layer(layer, h, w, c);
+ resize_normalization_layer(layer, h, w);
image output = get_normalization_image(*layer);
h = output.h;
w = output.w;
@@ -527,6 +562,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return get_convolutional_image(layer);
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return get_deconvolutional_image(layer);
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return get_maxpool_image(layer);
diff --git a/src/network.h b/src/network.h
index d1f8638..66873d2 100644
--- a/src/network.h
+++ b/src/network.h
@@ -7,6 +7,7 @@
typedef enum {
CONVOLUTIONAL,
+ DECONVOLUTIONAL,
CONNECTED,
MAXPOOL,
SOFTMAX,
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index c49f37b..1f3f2e0 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -10,6 +10,7 @@
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
@@ -31,6 +32,11 @@
forward_convolutional_layer_gpu(layer, input);
input = layer.output_gpu;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ forward_deconvolutional_layer_gpu(layer, input);
+ input = layer.output_gpu;
+ }
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
@@ -84,6 +90,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+ }
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
@@ -116,6 +126,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ update_deconvolutional_layer_gpu(layer);
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer);
@@ -129,6 +143,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_gpu;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.output_gpu;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_gpu;
@@ -157,6 +175,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_gpu;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.delta_gpu;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_gpu;
@@ -208,6 +230,10 @@
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
+ else if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+ return layer.output;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
diff --git a/src/normalization_layer.c b/src/normalization_layer.c
index 67d873c..d82451b 100644
--- a/src/normalization_layer.c
+++ b/src/normalization_layer.c
@@ -35,13 +35,12 @@
return layer;
}
-void resize_normalization_layer(normalization_layer *layer, int h, int w, int c)
+void resize_normalization_layer(normalization_layer *layer, int h, int w)
{
layer->h = h;
layer->w = w;
- layer->c = c;
- layer->output = realloc(layer->output, h * w * c * layer->batch * sizeof(float));
- layer->delta = realloc(layer->delta, h * w * c * layer->batch * sizeof(float));
+ layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
+ layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
layer->sums = realloc(layer->sums, h*w * sizeof(float));
}
diff --git a/src/normalization_layer.h b/src/normalization_layer.h
index fcf8af1..914fe7d 100644
--- a/src/normalization_layer.h
+++ b/src/normalization_layer.h
@@ -17,7 +17,7 @@
image get_normalization_image(normalization_layer layer);
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
-void resize_normalization_layer(normalization_layer *layer, int h, int w, int c);
+void resize_normalization_layer(normalization_layer *layer, int h, int w);
void forward_normalization_layer(const normalization_layer layer, float *in);
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
void visualize_normalization_layer(normalization_layer layer, char *window);
diff --git a/src/parser.c b/src/parser.c
index 6a107cc..3f94c80 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,6 +7,7 @@
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
@@ -23,6 +24,7 @@
}section;
int is_convolutional(section *s);
+int is_deconvolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
int is_dropout(section *s);
@@ -65,6 +67,49 @@
}
}
+deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+{
+ int h,w,c;
+ float learning_rate, momentum, decay;
+ int n = option_find_int(options, "filters",1);
+ int size = option_find_int(options, "size",1);
+ int stride = option_find_int(options, "stride",1);
+ char *activation_s = option_find_str(options, "activation", "sigmoid");
+ ACTIVATION activation = get_activation(activation_s);
+ if(count == 0){
+ learning_rate = option_find_float(options, "learning_rate", .001);
+ momentum = option_find_float(options, "momentum", .9);
+ decay = option_find_float(options, "decay", .0001);
+ h = option_find_int(options, "height",1);
+ w = option_find_int(options, "width",1);
+ c = option_find_int(options, "channels",1);
+ net->batch = option_find_int(options, "batch",1);
+ net->learning_rate = learning_rate;
+ net->momentum = momentum;
+ net->decay = decay;
+ net->seen = option_find_int(options, "seen",0);
+ }else{
+ learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+ momentum = option_find_float_quiet(options, "momentum", net->momentum);
+ decay = option_find_float_quiet(options, "decay", net->decay);
+ image m = get_network_image_layer(*net, count-1);
+ h = m.h;
+ w = m.w;
+ c = m.c;
+ if(h == 0) error("Layer before deconvolutional layer must output image.");
+ }
+ deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+ char *weights = option_find_str(options, "weights", 0);
+ char *biases = option_find_str(options, "biases", 0);
+ parse_data(weights, layer->filters, c*n*size*size);
+ parse_data(biases, layer->biases, n);
+ #ifdef GPU
+ if(weights || biases) push_deconvolutional_layer(*layer);
+ #endif
+ option_unused(options);
+ return layer;
+}
+
convolutional_layer *parse_convolutional(list *options, network *net, int count)
{
int h,w,c;
@@ -306,6 +351,10 @@
convolutional_layer *layer = parse_convolutional(options, &net, count);
net.types[count] = CONVOLUTIONAL;
net.layers[count] = layer;
+ }else if(is_deconvolutional(s)){
+ deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+ net.types[count] = DECONVOLUTIONAL;
+ net.layers[count] = layer;
}else if(is_connected(s)){
connected_layer *layer = parse_connected(options, &net, count);
net.types[count] = CONNECTED;
@@ -360,6 +409,11 @@
{
return (strcmp(s->type, "[cost]")==0);
}
+int is_deconvolutional(section *s)
+{
+ return (strcmp(s->type, "[deconv]")==0
+ || strcmp(s->type, "[deconvolutional]")==0);
+}
int is_convolutional(section *s)
{
return (strcmp(s->type, "[conv]")==0
@@ -438,7 +492,7 @@
break;
default:
if(!read_option(line, current->options)){
- printf("Config file error line %d, could parse: %s\n", nu, line);
+ fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
free(line);
}
break;
@@ -488,6 +542,45 @@
fprintf(fp, "\n\n");
}
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+ #ifdef GPU
+ if(gpu_index >= 0) pull_deconvolutional_layer(*l);
+ #endif
+ int i;
+ fprintf(fp, "[deconvolutional]\n");
+ if(count == 0) {
+ fprintf(fp, "batch=%d\n"
+ "height=%d\n"
+ "width=%d\n"
+ "channels=%d\n"
+ "learning_rate=%g\n"
+ "momentum=%g\n"
+ "decay=%g\n"
+ "seen=%d\n",
+ l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+ } else {
+ if(l->learning_rate != net.learning_rate)
+ fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+ if(l->momentum != net.momentum)
+ fprintf(fp, "momentum=%g\n", l->momentum);
+ if(l->decay != net.decay)
+ fprintf(fp, "decay=%g\n", l->decay);
+ }
+ fprintf(fp, "filters=%d\n"
+ "size=%d\n"
+ "stride=%d\n"
+ "activation=%s\n",
+ l->n, l->size, l->stride,
+ get_activation_string(l->activation));
+ fprintf(fp, "biases=");
+ for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+ fprintf(fp, "\n");
+ fprintf(fp, "weights=");
+ for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+ fprintf(fp, "\n\n");
+}
+
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
{
fprintf(fp, "[freeweight]\n");
@@ -599,7 +692,7 @@
void save_weights(network net, char *filename)
{
- printf("Saving weights to %s\n", filename);
+ fprintf(stderr, "Saving weights to %s\n", filename);
FILE *fp = fopen(filename, "w");
if(!fp) file_error(filename);
@@ -621,6 +714,17 @@
fwrite(layer.biases, sizeof(float), layer.n, fp);
fwrite(layer.filters, sizeof(float), num, fp);
}
+ if(net.types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+ #ifdef GPU
+ if(gpu_index >= 0){
+ pull_deconvolutional_layer(layer);
+ }
+ #endif
+ int num = layer.n*layer.c*layer.size*layer.size;
+ fwrite(layer.biases, sizeof(float), layer.n, fp);
+ fwrite(layer.filters, sizeof(float), num, fp);
+ }
if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i];
#ifdef GPU
@@ -637,7 +741,7 @@
void load_weights(network *net, char *filename)
{
- printf("Loading weights from %s\n", filename);
+ fprintf(stderr, "Loading weights from %s\n", filename);
FILE *fp = fopen(filename, "r");
if(!fp) file_error(filename);
@@ -660,6 +764,17 @@
}
#endif
}
+ if(net->types[i] == DECONVOLUTIONAL){
+ deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+ int num = layer.n*layer.c*layer.size*layer.size;
+ fread(layer.biases, sizeof(float), layer.n, fp);
+ fread(layer.filters, sizeof(float), num, fp);
+ #ifdef GPU
+ if(gpu_index >= 0){
+ push_deconvolutional_layer(layer);
+ }
+ #endif
+ }
if(net->types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net->layers[i];
fread(layer.biases, sizeof(float), layer.outputs, fp);
@@ -683,6 +798,8 @@
{
if(net.types[i] == CONVOLUTIONAL)
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+ else if(net.types[i] == DECONVOLUTIONAL)
+ print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
else if(net.types[i] == CONNECTED)
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
else if(net.types[i] == CROP)
--
Gitblit v1.10.0