From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!

---
 src/darknet.c |  306 ++++++++++++++++++++++++++++++++------------------
 1 files changed, 197 insertions(+), 109 deletions(-)

diff --git a/src/darknet.c b/src/darknet.c
index 4f575dc..92a9196 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -57,8 +57,8 @@
                 int d = im.w/side;
                 int y = r*d+box[j+1]*d;
                 int x = c*d+box[j+2]*d;
-                int h = box[j+3]*256;
-                int w = box[j+4]*256;
+                int h = box[j+3]*im.h;
+                int w = box[j+4]*im.w;
                 //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
                 //printf("%d %d %d %d\n", x, y, w, h);
                 //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
@@ -70,54 +70,79 @@
     cvWaitKey(0);
 }
 
-
-void train_detection_net(char *cfgfile)
+char *basename(char *cfgfile)
 {
+    char *c = cfgfile;
+    char *next;
+    while((next = strchr(c, '/')))
+    {
+        c = next+1;
+    }
+    c = copy_string(c);
+    next = strchr(c, '_');
+    if (next) *next = 0;
+    next = strchr(c, '.');
+    if (next) *next = 0;
+    return c;
+}
+
+void train_detection_net(char *cfgfile, char *weightfile)
+{
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
     float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1024;
+    int imgs = 128;
     srand(time(0));
     //srand(23410);
-    int i = 0;
-    list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
+    int i = net.seen/imgs;
+    list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
     data train, buffer;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+    int im_dim = 512;
+    int jitter = 64;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
-        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
 
-/*
-        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        /*
+        image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]);
         draw_detection(im, train.y.vals[923], 7);
+        show_image(im, "truth");
+        cvWaitKey(0);
         */
 
-        normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
+        net.seen += imgs;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         if(i%100==0){
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
-            save_network(net, buff);
+            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            save_weights(net, buff);
         }
         free_data(train);
     }
 }
 
-void validate_detection_net(char *cfgfile)
+void validate_detection_net(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
@@ -137,7 +162,6 @@
         time=clock();
         pthread_join(load_thread, 0);
         val = buffer;
-        normalize_data_rows(val);
 
         num = (i+1)*m/splits - i*m/splits;
         char **part = paths+(i*m/splits);
@@ -206,16 +230,27 @@
 }
 */
 
-void train_imagenet(char *cfgfile)
+void convert(char *cfgfile, char *outfile, char *weightfile)
 {
-    float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    srand(time(0));
     network net = parse_network_cfg(cfgfile);
-    //test_learn_bias(*(convolutional_layer *)net.layers[1]);
-    //set_learning_network(&net, net.learning_rate, 0, net.decay);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    save_network(net, outfile);
+}
+
+void train_imagenet(char *cfgfile, char *weightfile)
+{
+    float avg_loss = -1;
+    srand(time(0));
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 3072;
+    int imgs = 1024;
     int i = net.seen/imgs;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
@@ -231,34 +266,35 @@
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        //normalize_data_rows(train);
-        //translate_data_rows(train, -128);
-        //scale_data_rows(train, 1./128);
         load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
         net.seen += imgs;
+        if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
         free_data(train);
         if(i%100==0){
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
-            save_network(net, buff);
+            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            save_weights(net, buff);
         }
     }
 }
 
-void validate_imagenet(char *filename)
+void validate_imagenet(char *filename, char *weightfile)
 {
     int i = 0;
     network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     srand(time(0));
 
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
 
-    list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
+    list *plist = get_paths("/data/imagenet/cls.val.list");
     char **paths = (char **)list_to_array(plist);
     int m = plist->size;
     free_list(plist);
@@ -276,7 +312,6 @@
 
         pthread_join(load_thread, 0);
         val = buffer;
-        //normalize_data_rows(val);
 
         num = (i+1)*m/splits - i*m/splits;
         char **part = paths+(i*m/splits);
@@ -292,9 +327,12 @@
     }
 }
 
-void test_detection(char *cfgfile)
+void test_detection(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -303,7 +341,8 @@
         fgets(filename, 256, stdin);
         strtok(filename, "\n");
         image im = load_image_color(filename, 224, 224);
-        z_normalize_image(im);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
         printf("%d %d %d\n", im.h, im.w, im.c);
         float *X = im.data;
         time=clock();
@@ -316,6 +355,7 @@
 
 void test_init(char *cfgfile)
 {
+    gpu_index = -1;
     network net = parse_network_cfg(cfgfile);
     set_batch_network(&net, 1);
     srand(2222222);
@@ -347,10 +387,52 @@
     }
     free_image(im);
 }
-
-void test_imagenet()
+void test_dog(char *cfgfile)
 {
-    network net = parse_network_cfg("cfg/imagenet_test.cfg");
+    image im = load_image_color("data/dog.jpg", 256, 256);
+    translate_image(im, -128);
+    print_image(im);
+    float *X = im.data;
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    network_predict(net, X);
+    image crop = get_network_image_layer(net, 0);
+    show_image(crop, "cropped");
+    print_image(crop);
+    show_image(im, "orig");
+    float * inter = get_network_output(net);
+    pm(1000, 1, inter);
+    cvWaitKey(0);
+}
+
+void test_voc_segment(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    while(1){
+        char filename[256];
+        fgets(filename, 256, stdin);
+        strtok(filename, "\n");
+        image im = load_image_color(filename, 500, 500);
+        //resize_network(net, im.h, im.w, im.c);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
+        //float *predictions = network_predict(net, im.data);
+        network_predict(net, im.data);
+        free_image(im);
+        image output = get_network_image_layer(net, net.n-2);
+        show_image(output, "Segment Output");
+        cvWaitKey(0);
+    }
+}
+
+void test_imagenet(char *cfgfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
     //imgs=1;
     srand(2222222);
     int i = 0;
@@ -362,7 +444,8 @@
         fgets(filename, 256, stdin);
         strtok(filename, "\n");
         image im = load_image_color(filename, 256, 256);
-        z_normalize_image(im);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
         printf("%d %d %d\n", im.h, im.w, im.c);
         float *X = im.data;
         time=clock();
@@ -472,28 +555,28 @@
 }
 
 /*
-void train_nist_distributed(char *address)
-{
-    srand(time(0));
-    network net = parse_network_cfg("cfg/nist.client");
-    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-    //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-    normalize_data_rows(train);
-    //normalize_data_rows(test);
-    int count = 0;
-    int iters = 50000/net.batch;
-    iters = 1000/net.batch + 1;
-    while(++count <= 2000){
-        clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, iters);
-        client_update(net, address);
-        end = clock();
-        //float test_acc = network_accuracy_gpu(net, test);
-        //float test_acc = 0;
-        printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
-    }
+   void train_nist_distributed(char *address)
+   {
+   srand(time(0));
+   network net = parse_network_cfg("cfg/nist.client");
+   data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+normalize_data_rows(train);
+//normalize_data_rows(test);
+int count = 0;
+int iters = 50000/net.batch;
+iters = 1000/net.batch + 1;
+while(++count <= 2000){
+clock_t start = clock(), end;
+float loss = train_network_sgd(net, train, iters);
+client_update(net, address);
+end = clock();
+//float test_acc = network_accuracy_gpu(net, test);
+//float test_acc = 0;
+printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
 }
-*/
+}
+ */
 
 void test_ensemble()
 {
@@ -535,7 +618,7 @@
 void visualize_cat()
 {
     network net = parse_network_cfg("cfg/voc_imagenet.cfg");
-    image im = load_image("data/cat.png", 0, 0);
+    image im = load_image_color("data/cat.png", 0, 0);
     printf("Processing %dx%d image\n", im.h, im.w);
     resize_network(net, im.h, im.w, im.c);
     forward_network(net, im.data, 0, 0);
@@ -544,24 +627,6 @@
     cvWaitKey(0);
 }
 
-void test_convolutional_layer()
-{
-    network net = parse_network_cfg("cfg/nist_conv.cfg");
-    int size = get_network_input_size(net);
-    float *in = calloc(size, sizeof(float));
-    int i;
-    for(i = 0; i < size; ++i) in[i] = rand_normal();
-    float *in_gpu = cuda_make_array(in, size);
-    convolutional_layer layer = *(convolutional_layer *)net.layers[0];
-    int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
-    cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
-    cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
-    cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
-    bias_output(layer);
-    bias_output_gpu(layer);
-    cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
-}
-
 void test_correct_nist()
 {
     network net = parse_network_cfg("cfg/nist_conv.cfg");
@@ -586,7 +651,7 @@
     gpu_index = -1;
     count = 0;
     srand(222222);
-     net = parse_network_cfg("cfg/nist_conv.cfg");
+    net = parse_network_cfg("cfg/nist_conv.cfg");
     while(++count <= 5){
         clock_t start = clock(), end;
         float loss = train_network_sgd(net, train, iters);
@@ -641,40 +706,44 @@
 }
 
 /*
-void run_server()
-{
-    srand(time(0));
-    network net = parse_network_cfg("cfg/net.cfg");
-    set_batch_network(&net, 1);
-    server_update(net);
-}
+   void run_server()
+   {
+   srand(time(0));
+   network net = parse_network_cfg("cfg/net.cfg");
+   set_batch_network(&net, 1);
+   server_update(net);
+   }
 
-void test_client()
-{
-    network net = parse_network_cfg("cfg/alexnet.client");
-    clock_t time=clock();
-    client_update(net, "localhost");
-    printf("1\n");
-    client_update(net, "localhost");
-    printf("2\n");
-    client_update(net, "localhost");
-    printf("3\n");
-    printf("Transfered: %lf seconds\n", sec(clock()-time));
-}
-*/
+   void test_client()
+   {
+   network net = parse_network_cfg("cfg/alexnet.client");
+   clock_t time=clock();
+   client_update(net, "localhost");
+   printf("1\n");
+   client_update(net, "localhost");
+   printf("2\n");
+   client_update(net, "localhost");
+   printf("3\n");
+   printf("Transfered: %lf seconds\n", sec(clock()-time));
+   }
+ */
 
 void del_arg(int argc, char **argv, int index)
 {
     int i;
     for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
+    argv[i] = 0;
 }
 
 int find_arg(int argc, char* argv[], char *arg)
 {
     int i;
-    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
-        del_arg(argc, argv, i);
-        return 1;
+    for(i = 0; i < argc; ++i) {
+        if(!argv[i]) continue;
+        if(0==strcmp(argv[i], arg)) {
+            del_arg(argc, argv, i);
+            return 1;
+        }
     }
     return 0;
 }
@@ -683,6 +752,7 @@
 {
     int i;
     for(i = 0; i < argc-1; ++i){
+        if(!argv[i]) continue;
         if(0==strcmp(argv[i], arg)){
             def = atoi(argv[i+1]);
             del_arg(argc, argv, i);
@@ -693,6 +763,20 @@
     return def;
 }
 
+void scale_rate(char *filename, float scale)
+{
+    // Ready for some weird shit??
+    FILE *fp = fopen(filename, "r+b");
+    if(!fp) file_error(filename);
+    float rate = 0;
+    fread(&rate, sizeof(float), 1, fp);
+    printf("Scaling learning rate from %f to %f\n", rate, rate*scale);
+    rate = rate*scale;
+    fseek(fp, 0, SEEK_SET);
+    fwrite(&rate, sizeof(float), 1, fp);
+    fclose(fp);
+}
+
 int main(int argc, char **argv)
 {
     //test_convolutional_layer();
@@ -713,7 +797,6 @@
 
     if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
     else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
-    else if(0==strcmp(argv[1], "test")) test_imagenet();
     //else if(0==strcmp(argv[1], "server")) run_server();
 
 #ifdef GPU
@@ -724,23 +807,28 @@
         fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
         return 0;
     }
-    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
     else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
     else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
-    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
     //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
-    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
+    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
-    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
-    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2], (argc > 3)? argv[3] : 0);
     else if(argc < 4){
         fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
         return 0;
     }
     else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
+    else if(0==strcmp(argv[1], "convert")) convert(argv[2], argv[3], (argc > 4)? argv[4] : 0);
+    else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
     fprintf(stderr, "Success!\n");
     return 0;
 }

--
Gitblit v1.10.0