From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!

---
 src/network.c |  115 +++++++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 95 insertions(+), 20 deletions(-)

diff --git a/src/network.c b/src/network.c
index 42253dc..bf0d63f 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -15,6 +16,35 @@
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case MAXPOOL:
+            return "maxpool";
+        case SOFTMAX:
+            return "softmax";
+        case NORMALIZATION:
+            return "normalization";
+        case DROPOUT:
+            return "dropout";
+        case FREEWEIGHT:
+            return "freeweight";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        default:
+            break;
+    }
+    return "none";
+}
+
 network make_network(int n, int batch)
 {
     network net;
@@ -24,14 +54,14 @@
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
+    net.seen = 0;
     #ifdef GPU
-    net.input_cl = calloc(1, sizeof(cl_mem));
-    net.truth_cl = calloc(1, sizeof(cl_mem));
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
     #endif
     return net;
 }
 
-
 void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
@@ -41,6 +71,11 @@
             forward_convolutional_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer(layer, input);
+            input = layer.output;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             forward_connected_layer(layer, input);
@@ -48,7 +83,7 @@
         }
         else if(net.types[i] == CROP){
             crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
+            forward_crop_layer(layer, train, input);
             input = layer.output;
         }
         else if(net.types[i] == COST){
@@ -78,9 +113,12 @@
         }
         else if(net.types[i] == FREEWEIGHT){
             if(!train) continue;
-            freeweight_layer layer = *(freeweight_layer *)net.layers[i];
-            forward_freeweight_layer(layer, input);
+            //freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+            //forward_freeweight_layer(layer, input);
         }
+        //char buff[256];
+        //sprintf(buff, "layer %d", i);
+        //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
     }
 }
 
@@ -92,19 +130,13 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer(layer);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer(layer);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            secret_update_connected_layer((connected_layer *)net.layers[i]);
-            //update_connected_layer(layer);
+            update_connected_layer(layer);
         }
     }
 }
@@ -114,6 +146,9 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;
@@ -149,6 +184,9 @@
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
@@ -218,9 +256,13 @@
             prev_input = get_network_output_layer(net, i-1);
             prev_delta = get_network_delta_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer(layer, prev_input, prev_delta);
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -348,6 +390,9 @@
         if(net->types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net->layers[i];
             layer->batch = b;
+        }else if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+            layer->batch = b;
         }
         else if(net->types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net->layers[i];
@@ -372,6 +417,10 @@
             cost_layer *layer = (cost_layer *)net->layers[i];
             layer->batch = b;
         }
+        else if(net->types[i] == CROP){
+            crop_layer *layer = (crop_layer *)net->layers[i];
+            layer->batch = b;
+        }
     }
 }
 
@@ -382,6 +431,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
     }
+    if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
@@ -415,6 +468,11 @@
         image output = get_convolutional_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        image output = get_deconvolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         image output = get_maxpool_image(layer);
@@ -450,21 +508,31 @@
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
+            resize_convolutional_layer(layer, h, w);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
         }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
+            resize_maxpool_layer(layer, h, w);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
         }else if(net.types[i] == NORMALIZATION){
             normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
+            resize_normalization_layer(layer, h, w);
             image output = get_normalization_image(*layer);
             h = output.h;
             w = output.w;
@@ -494,6 +562,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return get_convolutional_image(layer);
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return get_deconvolutional_image(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
@@ -502,6 +574,9 @@
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return get_normalization_image(layer);
     }
+    else if(net.types[i] == DROPOUT){
+        return get_network_image_layer(net, i-1);
+    }
     else if(net.types[i] == CROP){
         crop_layer layer = *(crop_layer *)net.layers[i];
         return get_crop_image(layer);
@@ -549,7 +624,7 @@
 float *network_predict(network net, float *input)
 {
     #ifdef GPU
-        if(gpu_index >= 0) return network_predict_gpu(net, input);
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
     #endif
 
     forward_network(net, input, 0, 0);

--
Gitblit v1.10.0