From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!

---
 src/network_kernels.cu |   38 +++++++++++++++++++++++++++++++++++++-
 1 files changed, 37 insertions(+), 1 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index a009174..1f3f2e0 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -10,6 +10,7 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -31,6 +32,11 @@
             forward_convolutional_layer_gpu(layer, input);
             input = layer.output_gpu;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer_gpu(layer, input);
+            input = layer.output_gpu;
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             forward_cost_layer_gpu(layer, input, truth);
@@ -58,9 +64,10 @@
         }
         else if(net.types[i] == CROP){
             crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer_gpu(layer, input);
+            forward_crop_layer_gpu(layer, train, input);
             input = layer.output_gpu;
         }
+        //cudaDeviceSynchronize();
         //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
     }
 }
@@ -83,6 +90,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             backward_cost_layer_gpu(layer, prev_input, prev_delta);
@@ -115,6 +126,10 @@
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer_gpu(layer);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer_gpu(layer);
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer_gpu(layer);
@@ -128,6 +143,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output_gpu;
@@ -156,6 +175,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta_gpu;
@@ -176,6 +199,7 @@
 
 float train_network_datum_gpu(network net, float *x, float *y)
 {
+  //clock_t time = clock();
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
     if(!*net.input_gpu){
@@ -185,10 +209,18 @@
         cuda_push_array(*net.input_gpu, x, x_size);
         cuda_push_array(*net.truth_gpu, y, y_size);
     }
+  //printf("trans %f\n", sec(clock() - time));
+  //time = clock();
     forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
+  //printf("forw %f\n", sec(clock() - time));
+  //time = clock();
     backward_network_gpu(net, *net.input_gpu);
+  //printf("back %f\n", sec(clock() - time));
+  //time = clock();
     update_network_gpu(net);
     float error = get_network_cost(net);
+  //printf("updt %f\n", sec(clock() - time));
+  //time = clock();
     return error;
 }
 
@@ -198,6 +230,10 @@
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);

--
Gitblit v1.10.0