From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!

---
 src/parser.c |  241 +++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 226 insertions(+), 15 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 37ceb08..3f94c80 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,6 +7,7 @@
 #include "crop_layer.h"
 #include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
@@ -23,6 +24,7 @@
 }section;
 
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
@@ -65,6 +67,49 @@
     }
 }
 
+deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+{
+    int h,w,c;
+    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    ACTIVATION activation = get_activation(activation_s);
+    if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before deconvolutional layer must output image.");
+    }
+    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(*layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
 convolutional_layer *parse_convolutional(list *options, network *net, int count)
 {
     int h,w,c;
@@ -86,6 +131,7 @@
         net->learning_rate = learning_rate;
         net->momentum = momentum;
         net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
     }else{
         learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
         momentum = option_find_float_quiet(options, "momentum", net->momentum);
@@ -102,7 +148,7 @@
     parse_data(weights, layer->filters, c*n*size*size);
     parse_data(biases, layer->biases, n);
     #ifdef GPU
-    push_convolutional_layer(*layer);
+    if(weights || biases) push_convolutional_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -136,7 +182,7 @@
     parse_data(biases, layer->biases, output);
     parse_data(weights, layer->weights, input*output);
     #ifdef GPU
-    push_connected_layer(*layer);
+    if(weights || biases) push_connected_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -148,6 +194,7 @@
     if(count == 0){
         input = option_find_int(options, "input",1);
         net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
@@ -162,6 +209,7 @@
     if(count == 0){
         input = option_find_int(options, "input",1);
         net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
@@ -190,6 +238,7 @@
         net->learning_rate = learning_rate;
         net->momentum = momentum;
         net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
     }else{
         image m =  get_network_image_layer(*net, count-1);
         h = m.h;
@@ -212,6 +261,7 @@
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
         net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
         image m =  get_network_image_layer(*net, count-1);
         h = m.h;
@@ -224,6 +274,7 @@
     return layer;
 }
 
+/*
 freeweight_layer *parse_freeweight(list *options, network *net, int count)
 {
     int input;
@@ -237,6 +288,7 @@
     option_unused(options);
     return layer;
 }
+*/
 
 dropout_layer *parse_dropout(list *options, network *net, int count)
 {
@@ -251,6 +303,7 @@
         net->learning_rate = learning_rate;
         net->momentum = momentum;
         net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
     }else{
         input =  get_network_output_size_layer(*net, count-1);
     }
@@ -271,6 +324,7 @@
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
         net->batch = option_find_int(options, "batch",1);
+        net->seen = option_find_int(options, "seen",0);
     }else{
         image m =  get_network_image_layer(*net, count-1);
         h = m.h;
@@ -297,6 +351,10 @@
             convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
+        }else if(is_deconvolutional(s)){
+            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+            net.types[count] = DECONVOLUTIONAL;
+            net.layers[count] = layer;
         }else if(is_connected(s)){
             connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
@@ -326,9 +384,10 @@
             net.types[count] = DROPOUT;
             net.layers[count] = layer;
         }else if(is_freeweight(s)){
-            freeweight_layer *layer = parse_freeweight(options, &net, count);
-            net.types[count] = FREEWEIGHT;
-            net.layers[count] = layer;
+            //freeweight_layer *layer = parse_freeweight(options, &net, count);
+            //net.types[count] = FREEWEIGHT;
+            //net.layers[count] = layer;
+            fprintf(stderr, "Type not recognized: %s\n", s->type);
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -350,6 +409,11 @@
 {
     return (strcmp(s->type, "[cost]")==0);
 }
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -387,8 +451,8 @@
 
 int read_option(char *s, list *options)
 {
-    int i;
-    int len = strlen(s);
+    size_t i;
+    size_t len = strlen(s);
     char *val = 0;
     for(i = 0; i < len; ++i){
         if(s[i] == '='){
@@ -416,7 +480,6 @@
         strip(line);
         switch(line[0]){
             case '[':
-                printf("%s\n", line);
                 current = malloc(sizeof(section));
                 list_insert(sections, current);
                 current->options = make_list();
@@ -429,7 +492,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -441,6 +504,9 @@
 
 void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
 {
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_convolutional_layer(*l);
+    #endif
     int i;
     fprintf(fp, "[convolutional]\n");
     if(count == 0) {
@@ -450,8 +516,9 @@
                 "channels=%d\n"
                 "learning_rate=%g\n"
                 "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
     } else {
         if(l->learning_rate != net.learning_rate)
             fprintf(fp, "learning_rate=%g\n", l->learning_rate);
@@ -475,6 +542,45 @@
     fprintf(fp, "\n\n");
 }
 
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[deconvolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
 void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
 {
     fprintf(fp, "[freeweight]\n");
@@ -495,6 +601,9 @@
 
 void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
 {
+    #ifdef GPU
+    if(gpu_index >= 0) pull_connected_layer(*l);
+    #endif
     int i;
     fprintf(fp, "[connected]\n");
     if(count == 0){
@@ -502,8 +611,9 @@
                 "input=%d\n"
                 "learning_rate=%g\n"
                 "momentum=%g\n"
-                "decay=%g\n",
-                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
     } else {
         if(l->learning_rate != net.learning_rate)
             fprintf(fp, "learning_rate=%g\n", l->learning_rate);
@@ -534,8 +644,9 @@
                 "channels=%d\n"
                 "learning_rate=%g\n"
                 "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
     }
     fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
 }
@@ -579,6 +690,104 @@
     fprintf(fp, "\n");
 }
 
+void save_weights(network net, char *filename)
+{
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(layer);
+            }
+            #endif
+            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
+            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    fprintf(stderr, "Loading weights from %s\n", filename);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
+    
+    int i;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net->layers[i];
+            fread(layer.biases, sizeof(float), layer.outputs, fp);
+            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(layer);
+            }
+            #endif
+        }
+    }
+    fclose(fp);
+}
 
 void save_network(network net, char *filename)
 {
@@ -589,6 +798,8 @@
     {
         if(net.types[i] == CONVOLUTIONAL)
             print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DECONVOLUTIONAL)
+            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
         else if(net.types[i] == CONNECTED)
             print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
         else if(net.types[i] == CROP)

--
Gitblit v1.10.0