From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 11 Feb 2015 03:41:03 +0000
Subject: [PATCH] Detection is back, baby\!

---
 src/softmax_layer.c |   75 ++-----------------------------------
 1 files changed, 4 insertions(+), 71 deletions(-)

diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index ffc028f..aa5ab06 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -1,5 +1,6 @@
 #include "softmax_layer.h"
-#include "mini_blas.h"
+#include "blas.h"
+#include "cuda.h"
 #include <float.h>
 #include <math.h>
 #include <stdlib.h>
@@ -15,8 +16,8 @@
     layer->delta = calloc(inputs*batch, sizeof(float));
     layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
     #ifdef GPU
-    layer->output_cl = cl_make_array(layer->output, inputs*batch); 
-    layer->delta_cl = cl_make_array(layer->delta, inputs*batch); 
+    layer->output_gpu = cuda_make_array(layer->output, inputs*batch); 
+    layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); 
     #endif
     return layer;
 }
@@ -49,71 +50,3 @@
     }
 }
 
-#ifdef GPU
-
-void pull_softmax_layer_output(const softmax_layer layer)
-{
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
-}
-
-cl_kernel get_softmax_forward_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/softmax_layer.cl", "forward", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
-{
-    cl_kernel kernel = get_softmax_forward_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.batch};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-
-    /*
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
-    int z;
-    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
-    */
-}
-
-void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
-{
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
-}
-#endif
-
-/* This is if you want softmax w/o log-loss classification. You probably don't.
-   int i,j,b;
-   for(b = 0; b < layer.batch; ++b){
-   for(i = 0; i < layer.inputs; ++i){
-   for(j = 0; j < layer.inputs; ++j){
-   int d = (i==j);
-   layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = 
-   layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
-   }
-   }
-   }
-   for(b = 0; b < layer.batch; ++b){
-   int M = layer.inputs;
-   int N = 1;
-   int K = layer.inputs;
-   float *A = layer.jacobian + b*layer.inputs*layer.inputs;
-   float *B = layer.delta + b*layer.inputs;
-   float *C = delta + b*layer.inputs;
-   gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
-   }
- */

--
Gitblit v1.10.0