From 11c72b1132feca7c1252ea01d02da4cb497e723f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:38:58 +0000
Subject: [PATCH] testing on one image
---
src/detection_layer.c | 428 +++++++++++++++++++++++++++++++++++++++++-----------
1 files changed, 334 insertions(+), 94 deletions(-)
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 27a4daf..3ab793a 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -3,167 +3,407 @@
#include "softmax_layer.h"
#include "blas.h"
#include "cuda.h"
+#include "utils.h"
#include <stdio.h>
+#include <string.h>
#include <stdlib.h>
-int get_detection_layer_locations(detection_layer layer)
+int get_detection_layer_locations(detection_layer l)
{
- return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
+ return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
}
-int get_detection_layer_output_size(detection_layer layer)
+int get_detection_layer_output_size(detection_layer l)
{
- return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
+ return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
}
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
+detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
{
- detection_layer *layer = calloc(1, sizeof(detection_layer));
+ detection_layer l = {0};
+ l.type = DETECTION;
- layer->batch = batch;
- layer->inputs = inputs;
- layer->classes = classes;
- layer->coords = coords;
- layer->rescore = rescore;
- layer->nuisance = nuisance;
- layer->background = background;
- int outputs = get_detection_layer_output_size(*layer);
- layer->output = calloc(batch*outputs, sizeof(float));
- layer->delta = calloc(batch*outputs, sizeof(float));
+ l.batch = batch;
+ l.inputs = inputs;
+ l.classes = classes;
+ l.coords = coords;
+ l.rescore = rescore;
+ l.objectness = objectness;
+ l.background = background;
+ l.joint = joint;
+ l.cost = calloc(1, sizeof(float));
+ l.does_cost=1;
+ int outputs = get_detection_layer_output_size(l);
+ l.outputs = outputs;
+ l.output = calloc(batch*outputs, sizeof(float));
+ l.delta = calloc(batch*outputs, sizeof(float));
#ifdef GPU
- layer->output_gpu = cuda_make_array(0, batch*outputs);
- layer->delta_gpu = cuda_make_array(0, batch*outputs);
+ l.output_gpu = cuda_make_array(0, batch*outputs);
+ l.delta_gpu = cuda_make_array(0, batch*outputs);
#endif
fprintf(stderr, "Detection Layer\n");
srand(0);
- return layer;
+ return l;
}
-void dark_zone(detection_layer layer, int class, int start, network_state state)
+typedef struct{
+ float dx, dy, dw, dh;
+} dbox;
+
+dbox derivative(box a, box b)
{
- int index = start+layer.background+class;
- int size = layer.classes+layer.coords+layer.background;
- int location = (index%(7*7*size)) / size ;
- int r = location / 7;
- int c = location % 7;
- int dr, dc;
- for(dr = -1; dr <= 1; ++dr){
- for(dc = -1; dc <= 1; ++dc){
- if(!(dr || dc)) continue;
- if((r + dr) > 6 || (r + dr) < 0) continue;
- if((c + dc) > 6 || (c + dc) < 0) continue;
- int di = (dr*7 + dc) * size;
- if(state.truth[index+di]) continue;
- layer.output[index + di] = 0;
- //if(!state.truth[start+di]) continue;
- //layer.output[start + di] = 1;
- }
+ dbox d;
+ d.dx = 0;
+ d.dw = 0;
+ float l1 = a.x - a.w/2;
+ float l2 = b.x - b.w/2;
+ if (l1 > l2){
+ d.dx -= 1;
+ d.dw += .5;
}
+ float r1 = a.x + a.w/2;
+ float r2 = b.x + b.w/2;
+ if(r1 < r2){
+ d.dx += 1;
+ d.dw += .5;
+ }
+ if (l1 > r2) {
+ d.dx = -1;
+ d.dw = 0;
+ }
+ if (r1 < l2){
+ d.dx = 1;
+ d.dw = 0;
+ }
+
+ d.dy = 0;
+ d.dh = 0;
+ float t1 = a.y - a.h/2;
+ float t2 = b.y - b.h/2;
+ if (t1 > t2){
+ d.dy -= 1;
+ d.dh += .5;
+ }
+ float b1 = a.y + a.h/2;
+ float b2 = b.y + b.h/2;
+ if(b1 < b2){
+ d.dy += 1;
+ d.dh += .5;
+ }
+ if (t1 > b2) {
+ d.dy = -1;
+ d.dh = 0;
+ }
+ if (b1 < t2){
+ d.dy = 1;
+ d.dh = 0;
+ }
+ return d;
}
-void forward_detection_layer(const detection_layer layer, network_state state)
+float overlap(float x1, float w1, float x2, float w2)
+{
+ float l1 = x1 - w1/2;
+ float l2 = x2 - w2/2;
+ float left = l1 > l2 ? l1 : l2;
+ float r1 = x1 + w1/2;
+ float r2 = x2 + w2/2;
+ float right = r1 < r2 ? r1 : r2;
+ return right - left;
+}
+
+float box_intersection(box a, box b)
+{
+ float w = overlap(a.x, a.w, b.x, b.w);
+ float h = overlap(a.y, a.h, b.y, b.h);
+ if(w < 0 || h < 0) return 0;
+ float area = w*h;
+ return area;
+}
+
+float box_union(box a, box b)
+{
+ float i = box_intersection(a, b);
+ float u = a.w*a.h + b.w*b.h - i;
+ return u;
+}
+
+float box_iou(box a, box b)
+{
+ return box_intersection(a, b)/box_union(a, b);
+}
+
+dbox dintersect(box a, box b)
+{
+ float w = overlap(a.x, a.w, b.x, b.w);
+ float h = overlap(a.y, a.h, b.y, b.h);
+ dbox dover = derivative(a, b);
+ dbox di;
+
+ di.dw = dover.dw*h;
+ di.dx = dover.dx*h;
+ di.dh = dover.dh*w;
+ di.dy = dover.dy*w;
+
+ return di;
+}
+
+dbox dunion(box a, box b)
+{
+ dbox du;
+
+ dbox di = dintersect(a, b);
+ du.dw = a.h - di.dw;
+ du.dh = a.w - di.dh;
+ du.dx = -di.dx;
+ du.dy = -di.dy;
+
+ return du;
+}
+
+dbox diou(box a, box b);
+
+void test_dunion()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dunion(a,b);
+ printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_union(a, b);
+ float xinter = box_union(dxa, b);
+ float yinter = box_union(dya, b);
+ float winter = box_union(dwa, b);
+ float hinter = box_union(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+void test_dintersect()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dintersect(a,b);
+ printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_intersection(a, b);
+ float xinter = box_intersection(dxa, b);
+ float yinter = box_intersection(dya, b);
+ float winter = box_intersection(dwa, b);
+ float hinter = box_intersection(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+
+void test_box()
+{
+ test_dintersect();
+ test_dunion();
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.00001, 0, 1, 1};
+ box dya= {0, 0+.00001, 1, 1};
+ box dwa= {0, 0, 1+.00001, 1};
+ box dha= {0, 0, 1, 1+.00001};
+
+ box b = {.5, 0, .2, .2};
+
+ float iou = box_iou(a,b);
+ iou = (1-iou)*(1-iou);
+ printf("%f\n", iou);
+ dbox d = diou(a, b);
+ printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh);
+
+ float xiou = box_iou(dxa, b);
+ float yiou = box_iou(dya, b);
+ float wiou = box_iou(dwa, b);
+ float hiou = box_iou(dha, b);
+ xiou = ((1-xiou)*(1-xiou) - iou)/(.00001);
+ yiou = ((1-yiou)*(1-yiou) - iou)/(.00001);
+ wiou = ((1-wiou)*(1-wiou) - iou)/(.00001);
+ hiou = ((1-hiou)*(1-hiou) - iou)/(.00001);
+ printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou);
+}
+
+dbox diou(box a, box b)
+{
+ float u = box_union(a,b);
+ float i = box_intersection(a,b);
+ dbox di = dintersect(a,b);
+ dbox du = dunion(a,b);
+ dbox dd = {0,0,0,0};
+
+ if(i <= 0 || 1) {
+ dd.dx = b.x - a.x;
+ dd.dy = b.y - a.y;
+ dd.dw = b.w - a.w;
+ dd.dh = b.h - a.h;
+ return dd;
+ }
+
+ dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u);
+ dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u);
+ dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u);
+ dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u);
+ return dd;
+}
+
+void forward_detection_layer(const detection_layer l, network_state state)
{
int in_i = 0;
int out_i = 0;
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
- for(i = 0; i < layer.batch*locations; ++i){
- int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
+ for(i = 0; i < l.batch*locations; ++i){
+ int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
float scale = 1;
- if(layer.rescore) scale = state.input[in_i++];
- else if(layer.nuisance){
- layer.output[out_i++] = 1-state.input[in_i++];
+ if(l.joint) scale = state.input[in_i++];
+ else if(l.objectness){
+ l.output[out_i++] = 1-state.input[in_i++];
scale = mask;
}
- else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
+ else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
- for(j = 0; j < layer.classes; ++j){
- layer.output[out_i++] = scale*state.input[in_i++];
+ for(j = 0; j < l.classes; ++j){
+ l.output[out_i++] = scale*state.input[in_i++];
}
- if(layer.nuisance){
-
- }else if(layer.background){
- softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
- activate_array(state.input+in_i, layer.coords, LOGISTIC);
+ if(l.objectness){
+
+ }else if(l.background){
+ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
+ activate_array(state.input+in_i, l.coords, LOGISTIC);
}
- for(j = 0; j < layer.coords; ++j){
- layer.output[out_i++] = mask*state.input[in_i++];
+ for(j = 0; j < l.coords; ++j){
+ l.output[out_i++] = mask*state.input[in_i++];
}
}
- /*
- if(layer.background || 1){
- for(i = 0; i < layer.batch*locations; ++i){
- int index = i*(layer.classes+layer.coords+layer.background);
- for(j= 0; j < layer.classes; ++j){
- if(state.truth[index+j+layer.background]){
- //dark_zone(layer, j, index, state);
+ float avg_iou = 0;
+ int count = 0;
+ if(l.does_cost && state.train){
+ *(l.cost) = 0;
+ int size = get_detection_layer_output_size(l) * l.batch;
+ memset(l.delta, 0, size * sizeof(float));
+ for (i = 0; i < l.batch*locations; ++i) {
+ int classes = l.objectness+l.classes;
+ int offset = i*(classes+l.coords);
+ for (j = offset; j < offset+classes; ++j) {
+ *(l.cost) += pow(state.truth[j] - l.output[j], 2);
+ l.delta[j] = state.truth[j] - l.output[j];
+ }
+
+ box truth;
+ truth.x = state.truth[j+0]/7;
+ truth.y = state.truth[j+1]/7;
+ truth.w = pow(state.truth[j+2], 2);
+ truth.h = pow(state.truth[j+3], 2);
+ box out;
+ out.x = l.output[j+0]/7;
+ out.y = l.output[j+1]/7;
+ out.w = pow(l.output[j+2], 2);
+ out.h = pow(l.output[j+3], 2);
+
+ if(!(truth.w*truth.h)) continue;
+ float iou = box_iou(out, truth);
+ avg_iou += iou;
+ ++count;
+ dbox delta = diou(out, truth);
+
+ l.delta[j+0] = 10 * delta.dx/7;
+ l.delta[j+1] = 10 * delta.dy/7;
+ l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
+ l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
+
+
+ *(l.cost) += pow((1-iou), 2);
+ l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
+ l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
+ l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
+ l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
+ if(l.rescore){
+ for (j = offset; j < offset+classes; ++j) {
+ if(state.truth[j]) state.truth[j] = iou;
+ l.delta[j] = state.truth[j] - l.output[j];
}
}
}
+ printf("Avg IOU: %f\n", avg_iou/count);
}
- */
}
-void backward_detection_layer(const detection_layer layer, network_state state)
+void backward_detection_layer(const detection_layer l, network_state state)
{
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
int in_i = 0;
int out_i = 0;
- for(i = 0; i < layer.batch*locations; ++i){
+ for(i = 0; i < l.batch*locations; ++i){
float scale = 1;
float latent_delta = 0;
- if(layer.rescore) scale = state.input[in_i++];
- else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
- else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
- for(j = 0; j < layer.classes; ++j){
- latent_delta += state.input[in_i]*layer.delta[out_i];
- state.delta[in_i++] = scale*layer.delta[out_i++];
+ if(l.joint) scale = state.input[in_i++];
+ else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++];
+ else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
+ for(j = 0; j < l.classes; ++j){
+ latent_delta += state.input[in_i]*l.delta[out_i];
+ state.delta[in_i++] = scale*l.delta[out_i++];
}
- if (layer.nuisance) ;
- else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
- for(j = 0; j < layer.coords; ++j){
- state.delta[in_i++] = layer.delta[out_i++];
+ if (l.objectness) {
+
+ }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
+ for(j = 0; j < l.coords; ++j){
+ state.delta[in_i++] = l.delta[out_i++];
}
- if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
+ if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta;
}
}
#ifdef GPU
-void forward_detection_layer_gpu(const detection_layer layer, network_state state)
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ int outputs = get_detection_layer_output_size(l);
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
- forward_detection_layer(layer, cpu_state);
- cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
+ forward_detection_layer(l, cpu_state);
+ cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
+ cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
}
-void backward_detection_layer_gpu(detection_layer layer, network_state state)
+void backward_detection_layer_gpu(detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
+ int outputs = get_detection_layer_output_size(l);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
- float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
network_state cpu_state;
cpu_state.train = state.train;
@@ -171,10 +411,10 @@
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
- cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
- backward_detection_layer(layer, cpu_state);
- cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
+ backward_detection_layer(l, cpu_state);
+ cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
free(in_cpu);
free(delta_cpu);
--
Gitblit v1.10.0