From 11c72b1132feca7c1252ea01d02da4cb497e723f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:38:58 +0000
Subject: [PATCH] testing on one image
---
src/detection_layer.c | 449 ++++++++++++++++++++++++++++++++++++++++++++++++++------
1 files changed, 400 insertions(+), 49 deletions(-)
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 6537079..3ab793a 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -1,72 +1,423 @@
-int detection_out_height(detection_layer layer)
+#include "detection_layer.h"
+#include "activations.h"
+#include "softmax_layer.h"
+#include "blas.h"
+#include "cuda.h"
+#include "utils.h"
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+
+int get_detection_layer_locations(detection_layer l)
{
- return layer.size + layer.h*layer.stride;
+ return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
}
-int detection_out_width(detection_layer layer)
+int get_detection_layer_output_size(detection_layer l)
{
- return layer.size + layer.w*layer.stride;
+ return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
}
-detection_layer *make_detection_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
+detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
{
- int i;
- size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
- detection_layer *layer = calloc(1, sizeof(detection_layer));
- layer->h = h;
- layer->w = w;
- layer->c = c;
- layer->n = n;
- layer->batch = batch;
- layer->stride = stride;
- layer->size = size;
- assert(c%n == 0);
+ detection_layer l = {0};
+ l.type = DETECTION;
+
+ l.batch = batch;
+ l.inputs = inputs;
+ l.classes = classes;
+ l.coords = coords;
+ l.rescore = rescore;
+ l.objectness = objectness;
+ l.background = background;
+ l.joint = joint;
+ l.cost = calloc(1, sizeof(float));
+ l.does_cost=1;
+ int outputs = get_detection_layer_output_size(l);
+ l.outputs = outputs;
+ l.output = calloc(batch*outputs, sizeof(float));
+ l.delta = calloc(batch*outputs, sizeof(float));
+ #ifdef GPU
+ l.output_gpu = cuda_make_array(0, batch*outputs);
+ l.delta_gpu = cuda_make_array(0, batch*outputs);
+ #endif
- layer->filters = calloc(c*size*size, sizeof(float));
- layer->filter_updates = calloc(c*size*size, sizeof(float));
- layer->filter_momentum = calloc(c*size*size, sizeof(float));
-
- float scale = 1./(size*size*c);
- for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
-
- int out_h = detection_out_height(*layer);
- int out_w = detection_out_width(*layer);
-
- layer->output = calloc(layer->batch * out_h * out_w * n, sizeof(float));
- layer->delta = calloc(layer->batch * out_h * out_w * n, sizeof(float));
-
- layer->activation = activation;
-
- fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+ fprintf(stderr, "Detection Layer\n");
srand(0);
- return layer;
+ return l;
}
-void forward_detection_layer(const detection_layer layer, float *in)
+typedef struct{
+ float dx, dy, dw, dh;
+} dbox;
+
+dbox derivative(box a, box b)
{
- int out_h = detection_out_height(layer);
- int out_w = detection_out_width(layer);
- int i,j,fh, fw,c;
- memset(layer.output, 0, layer->batch*layer->n*out_h*out_w*sizeof(float));
- for(c = 0; c < layer.c; ++c){
- for(i = 0; i < layer.h; ++i){
- for(j = 0; j < layer.w; ++j){
- float val = layer->input[j+(i + c*layer.h)*layer.w];
- for(fh = 0; fh < layer.size; ++fh){
- for(fw = 0; fw < layer.size; ++fw){
- int h = i*layer.stride + fh;
- int w = j*layer.stride + fw;
- layer.output[w+(h+c/n*out_h)*out_w] += val*layer->filters[fw+(fh+c*layer.size)*layer.size];
- }
+ dbox d;
+ d.dx = 0;
+ d.dw = 0;
+ float l1 = a.x - a.w/2;
+ float l2 = b.x - b.w/2;
+ if (l1 > l2){
+ d.dx -= 1;
+ d.dw += .5;
+ }
+ float r1 = a.x + a.w/2;
+ float r2 = b.x + b.w/2;
+ if(r1 < r2){
+ d.dx += 1;
+ d.dw += .5;
+ }
+ if (l1 > r2) {
+ d.dx = -1;
+ d.dw = 0;
+ }
+ if (r1 < l2){
+ d.dx = 1;
+ d.dw = 0;
+ }
+
+ d.dy = 0;
+ d.dh = 0;
+ float t1 = a.y - a.h/2;
+ float t2 = b.y - b.h/2;
+ if (t1 > t2){
+ d.dy -= 1;
+ d.dh += .5;
+ }
+ float b1 = a.y + a.h/2;
+ float b2 = b.y + b.h/2;
+ if(b1 < b2){
+ d.dy += 1;
+ d.dh += .5;
+ }
+ if (t1 > b2) {
+ d.dy = -1;
+ d.dh = 0;
+ }
+ if (b1 < t2){
+ d.dy = 1;
+ d.dh = 0;
+ }
+ return d;
+}
+
+float overlap(float x1, float w1, float x2, float w2)
+{
+ float l1 = x1 - w1/2;
+ float l2 = x2 - w2/2;
+ float left = l1 > l2 ? l1 : l2;
+ float r1 = x1 + w1/2;
+ float r2 = x2 + w2/2;
+ float right = r1 < r2 ? r1 : r2;
+ return right - left;
+}
+
+float box_intersection(box a, box b)
+{
+ float w = overlap(a.x, a.w, b.x, b.w);
+ float h = overlap(a.y, a.h, b.y, b.h);
+ if(w < 0 || h < 0) return 0;
+ float area = w*h;
+ return area;
+}
+
+float box_union(box a, box b)
+{
+ float i = box_intersection(a, b);
+ float u = a.w*a.h + b.w*b.h - i;
+ return u;
+}
+
+float box_iou(box a, box b)
+{
+ return box_intersection(a, b)/box_union(a, b);
+}
+
+dbox dintersect(box a, box b)
+{
+ float w = overlap(a.x, a.w, b.x, b.w);
+ float h = overlap(a.y, a.h, b.y, b.h);
+ dbox dover = derivative(a, b);
+ dbox di;
+
+ di.dw = dover.dw*h;
+ di.dx = dover.dx*h;
+ di.dh = dover.dh*w;
+ di.dy = dover.dy*w;
+
+ return di;
+}
+
+dbox dunion(box a, box b)
+{
+ dbox du;
+
+ dbox di = dintersect(a, b);
+ du.dw = a.h - di.dw;
+ du.dh = a.w - di.dh;
+ du.dx = -di.dx;
+ du.dy = -di.dy;
+
+ return du;
+}
+
+dbox diou(box a, box b);
+
+void test_dunion()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dunion(a,b);
+ printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_union(a, b);
+ float xinter = box_union(dxa, b);
+ float yinter = box_union(dya, b);
+ float winter = box_union(dwa, b);
+ float hinter = box_union(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+void test_dintersect()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dintersect(a,b);
+ printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_intersection(a, b);
+ float xinter = box_intersection(dxa, b);
+ float yinter = box_intersection(dya, b);
+ float winter = box_intersection(dwa, b);
+ float hinter = box_intersection(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+
+void test_box()
+{
+ test_dintersect();
+ test_dunion();
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.00001, 0, 1, 1};
+ box dya= {0, 0+.00001, 1, 1};
+ box dwa= {0, 0, 1+.00001, 1};
+ box dha= {0, 0, 1, 1+.00001};
+
+ box b = {.5, 0, .2, .2};
+
+ float iou = box_iou(a,b);
+ iou = (1-iou)*(1-iou);
+ printf("%f\n", iou);
+ dbox d = diou(a, b);
+ printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh);
+
+ float xiou = box_iou(dxa, b);
+ float yiou = box_iou(dya, b);
+ float wiou = box_iou(dwa, b);
+ float hiou = box_iou(dha, b);
+ xiou = ((1-xiou)*(1-xiou) - iou)/(.00001);
+ yiou = ((1-yiou)*(1-yiou) - iou)/(.00001);
+ wiou = ((1-wiou)*(1-wiou) - iou)/(.00001);
+ hiou = ((1-hiou)*(1-hiou) - iou)/(.00001);
+ printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou);
+}
+
+dbox diou(box a, box b)
+{
+ float u = box_union(a,b);
+ float i = box_intersection(a,b);
+ dbox di = dintersect(a,b);
+ dbox du = dunion(a,b);
+ dbox dd = {0,0,0,0};
+
+ if(i <= 0 || 1) {
+ dd.dx = b.x - a.x;
+ dd.dy = b.y - a.y;
+ dd.dw = b.w - a.w;
+ dd.dh = b.h - a.h;
+ return dd;
+ }
+
+ dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u);
+ dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u);
+ dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u);
+ dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u);
+ return dd;
+}
+
+void forward_detection_layer(const detection_layer l, network_state state)
+{
+ int in_i = 0;
+ int out_i = 0;
+ int locations = get_detection_layer_locations(l);
+ int i,j;
+ for(i = 0; i < l.batch*locations; ++i){
+ int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
+ float scale = 1;
+ if(l.joint) scale = state.input[in_i++];
+ else if(l.objectness){
+ l.output[out_i++] = 1-state.input[in_i++];
+ scale = mask;
+ }
+ else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
+
+ for(j = 0; j < l.classes; ++j){
+ l.output[out_i++] = scale*state.input[in_i++];
+ }
+ if(l.objectness){
+
+ }else if(l.background){
+ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
+ activate_array(state.input+in_i, l.coords, LOGISTIC);
+ }
+ for(j = 0; j < l.coords; ++j){
+ l.output[out_i++] = mask*state.input[in_i++];
+ }
+ }
+ float avg_iou = 0;
+ int count = 0;
+ if(l.does_cost && state.train){
+ *(l.cost) = 0;
+ int size = get_detection_layer_output_size(l) * l.batch;
+ memset(l.delta, 0, size * sizeof(float));
+ for (i = 0; i < l.batch*locations; ++i) {
+ int classes = l.objectness+l.classes;
+ int offset = i*(classes+l.coords);
+ for (j = offset; j < offset+classes; ++j) {
+ *(l.cost) += pow(state.truth[j] - l.output[j], 2);
+ l.delta[j] = state.truth[j] - l.output[j];
+ }
+
+ box truth;
+ truth.x = state.truth[j+0]/7;
+ truth.y = state.truth[j+1]/7;
+ truth.w = pow(state.truth[j+2], 2);
+ truth.h = pow(state.truth[j+3], 2);
+ box out;
+ out.x = l.output[j+0]/7;
+ out.y = l.output[j+1]/7;
+ out.w = pow(l.output[j+2], 2);
+ out.h = pow(l.output[j+3], 2);
+
+ if(!(truth.w*truth.h)) continue;
+ float iou = box_iou(out, truth);
+ avg_iou += iou;
+ ++count;
+ dbox delta = diou(out, truth);
+
+ l.delta[j+0] = 10 * delta.dx/7;
+ l.delta[j+1] = 10 * delta.dy/7;
+ l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
+ l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
+
+
+ *(l.cost) += pow((1-iou), 2);
+ l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
+ l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
+ l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
+ l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
+ if(l.rescore){
+ for (j = offset; j < offset+classes; ++j) {
+ if(state.truth[j]) state.truth[j] = iou;
+ l.delta[j] = state.truth[j] - l.output[j];
}
}
}
+ printf("Avg IOU: %f\n", avg_iou/count);
}
}
-void backward_detection_layer(const detection_layer layer, float *delta)
+void backward_detection_layer(const detection_layer l, network_state state)
{
+ int locations = get_detection_layer_locations(l);
+ int i,j;
+ int in_i = 0;
+ int out_i = 0;
+ for(i = 0; i < l.batch*locations; ++i){
+ float scale = 1;
+ float latent_delta = 0;
+ if(l.joint) scale = state.input[in_i++];
+ else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++];
+ else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
+ for(j = 0; j < l.classes; ++j){
+ latent_delta += state.input[in_i]*l.delta[out_i];
+ state.delta[in_i++] = scale*l.delta[out_i++];
+ }
+
+ if (l.objectness) {
+
+ }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
+ for(j = 0; j < l.coords; ++j){
+ state.delta[in_i++] = l.delta[out_i++];
+ }
+ if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta;
+ }
}
+#ifdef GPU
+
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
+{
+ int outputs = get_detection_layer_output_size(l);
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *truth_cpu = 0;
+ if(state.truth){
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
+ }
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ network_state cpu_state;
+ cpu_state.train = state.train;
+ cpu_state.truth = truth_cpu;
+ cpu_state.input = in_cpu;
+ forward_detection_layer(l, cpu_state);
+ cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
+ cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
+ free(cpu_state.input);
+ if(cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_detection_layer_gpu(detection_layer l, network_state state)
+{
+ int outputs = get_detection_layer_output_size(l);
+
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *truth_cpu = 0;
+ if(state.truth){
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
+ }
+ network_state cpu_state;
+ cpu_state.train = state.train;
+ cpu_state.input = in_cpu;
+ cpu_state.truth = truth_cpu;
+ cpu_state.delta = delta_cpu;
+
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
+ backward_detection_layer(l, cpu_state);
+ cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
+
+ free(in_cpu);
+ free(delta_cpu);
+}
+#endif
--
Gitblit v1.10.0