From 11c72b1132feca7c1252ea01d02da4cb497e723f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:38:58 +0000
Subject: [PATCH] testing on one image
---
src/network.c | 428 +++++++++++------------------------------------------
1 files changed, 88 insertions(+), 340 deletions(-)
diff --git a/src/network.c b/src/network.c
index 3247a31..68790e5 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,7 +4,6 @@
#include "image.h"
#include "data.h"
#include "utils.h"
-#include "params.h"
#include "crop_layer.h"
#include "connected_layer.h"
@@ -13,9 +12,9 @@
#include "detection_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
-#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
+#include "route_layer.h"
char *get_layer_string(LAYER_TYPE a)
{
@@ -32,14 +31,14 @@
return "softmax";
case DETECTION:
return "detection";
- case NORMALIZATION:
- return "normalization";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
+ case ROUTE:
+ return "route";
default:
break;
}
@@ -48,16 +47,9 @@
network make_network(int n)
{
- network net;
+ network net = {0};
net.n = n;
- net.layers = calloc(net.n, sizeof(void *));
- net.types = calloc(net.n, sizeof(LAYER_TYPE));
- net.outputs = 0;
- net.output = 0;
- net.seen = 0;
- net.batch = 0;
- net.inputs = 0;
- net.h = net.w = net.c = 0;
+ net.layers = calloc(net.n, sizeof(layer));
#ifdef GPU
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
@@ -69,37 +61,29 @@
{
int i;
for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ forward_convolutional_layer(l, state);
+ } else if(l.type == DECONVOLUTIONAL){
+ forward_deconvolutional_layer(l, state);
+ } else if(l.type == DETECTION){
+ forward_detection_layer(l, state);
+ } else if(l.type == CONNECTED){
+ forward_connected_layer(l, state);
+ } else if(l.type == CROP){
+ forward_crop_layer(l, state);
+ } else if(l.type == COST){
+ forward_cost_layer(l, state);
+ } else if(l.type == SOFTMAX){
+ forward_softmax_layer(l, state);
+ } else if(l.type == MAXPOOL){
+ forward_maxpool_layer(l, state);
+ } else if(l.type == DROPOUT){
+ forward_dropout_layer(l, state);
+ } else if(l.type == ROUTE){
+ forward_route_layer(l, net);
}
- else if(net.types[i] == DECONVOLUTIONAL){
- forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
- }
- else if(net.types[i] == DETECTION){
- forward_detection_layer(*(detection_layer *)net.layers[i], state);
- }
- else if(net.types[i] == CONNECTED){
- forward_connected_layer(*(connected_layer *)net.layers[i], state);
- }
- else if(net.types[i] == CROP){
- forward_crop_layer(*(crop_layer *)net.layers[i], state);
- }
- else if(net.types[i] == COST){
- forward_cost_layer(*(cost_layer *)net.layers[i], state);
- }
- else if(net.types[i] == SOFTMAX){
- forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
- }
- else if(net.types[i] == MAXPOOL){
- forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
- }
- else if(net.types[i] == NORMALIZATION){
- forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
- }
- else if(net.types[i] == DROPOUT){
- forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
- }
- state.input = get_network_output_layer(net, i);
+ state.input = l.output;
}
}
@@ -108,95 +92,35 @@
int i;
int update_batch = net.batch*net.subdivisions;
for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
- }
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+ } else if(l.type == DECONVOLUTIONAL){
+ update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
+ } else if(l.type == CONNECTED){
+ update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
}
}
}
-float *get_network_output_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- return ((convolutional_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DECONVOLUTIONAL){
- return ((deconvolutional_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == MAXPOOL){
- return ((maxpool_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DETECTION){
- return ((detection_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == SOFTMAX){
- return ((softmax_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == DROPOUT){
- return get_network_output_layer(net, i-1);
- } else if(net.types[i] == CONNECTED){
- return ((connected_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == CROP){
- return ((crop_layer *)net.layers[i]) -> output;
- } else if(net.types[i] == NORMALIZATION){
- return ((normalization_layer *)net.layers[i]) -> output;
- }
- return 0;
-}
-
float *get_network_output(network net)
{
int i;
- for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
- return get_network_output_layer(net, i);
-}
-
-float *get_network_delta_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- return layer.delta;
- } else if(net.types[i] == DROPOUT){
- if(i == 0) return 0;
- return get_network_delta_layer(net, i-1);
- } else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.delta;
- }
- return 0;
+ for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+ return net.layers[i].output;
}
float get_network_cost(network net)
{
- if(net.types[net.n-1] == COST){
- return ((cost_layer *)net.layers[net.n-1])->output[0];
+ if(net.layers[net.n-1].type == COST){
+ return net.layers[net.n-1].output[0];
}
- if(net.types[net.n-1] == DETECTION){
- return ((detection_layer *)net.layers[net.n-1])->cost[0];
+ if(net.layers[net.n-1].type == DETECTION){
+ return net.layers[net.n-1].cost[0];
}
return 0;
}
-float *get_network_delta(network net)
-{
- return get_network_delta_layer(net, net.n-1);
-}
-
int get_predicted_class_network(network net)
{
float *out = get_network_output(net);
@@ -213,44 +137,29 @@
state.input = original_input;
state.delta = 0;
}else{
- state.input = get_network_output_layer(net, i-1);
- state.delta = get_network_delta_layer(net, i-1);
+ layer prev = net.layers[i-1];
+ state.input = prev.output;
+ state.delta = prev.delta;
}
-
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- backward_convolutional_layer(layer, state);
- } else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- backward_deconvolutional_layer(layer, state);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- if(i != 0) backward_maxpool_layer(layer, state);
- }
- else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *)net.layers[i];
- backward_dropout_layer(layer, state);
- }
- else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- backward_detection_layer(layer, state);
- }
- else if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- if(i != 0) backward_normalization_layer(layer, state);
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- if(i != 0) backward_softmax_layer(layer, state);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- backward_connected_layer(layer, state);
- }
- else if(net.types[i] == COST){
- cost_layer layer = *(cost_layer *)net.layers[i];
- backward_cost_layer(layer, state);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ backward_convolutional_layer(l, state);
+ } else if(l.type == DECONVOLUTIONAL){
+ backward_deconvolutional_layer(l, state);
+ } else if(l.type == MAXPOOL){
+ if(i != 0) backward_maxpool_layer(l, state);
+ } else if(l.type == DROPOUT){
+ backward_dropout_layer(l, state);
+ } else if(l.type == DETECTION){
+ backward_detection_layer(l, state);
+ } else if(l.type == SOFTMAX){
+ if(i != 0) backward_softmax_layer(l, state);
+ } else if(l.type == CONNECTED){
+ backward_connected_layer(l, state);
+ } else if(l.type == COST){
+ backward_cost_layer(l, state);
+ } else if(l.type == ROUTE){
+ backward_route_layer(l, net);
}
}
}
@@ -336,121 +245,14 @@
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
- if(net->types[i] == CONVOLUTIONAL){
- convolutional_layer *layer = (convolutional_layer *)net->layers[i];
- layer->batch = b;
- }else if(net->types[i] == DECONVOLUTIONAL){
- deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == MAXPOOL){
- maxpool_layer *layer = (maxpool_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == CONNECTED){
- connected_layer *layer = (connected_layer *)net->layers[i];
- layer->batch = b;
- } else if(net->types[i] == DROPOUT){
- dropout_layer *layer = (dropout_layer *) net->layers[i];
- layer->batch = b;
- } else if(net->types[i] == DETECTION){
- detection_layer *layer = (detection_layer *) net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == SOFTMAX){
- softmax_layer *layer = (softmax_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == COST){
- cost_layer *layer = (cost_layer *)net->layers[i];
- layer->batch = b;
- }
- else if(net->types[i] == CROP){
- crop_layer *layer = (crop_layer *)net->layers[i];
- layer->batch = b;
- }
+ net->layers[i].batch = b;
}
}
-
-int get_network_input_size_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return layer.h*layer.w*layer.c;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *) net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *) net.layers[i];
- return layer.inputs;
- } else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *) net.layers[i];
- return layer.c*layer.h*layer.w;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.inputs;
- }
- fprintf(stderr, "Can't find input size\n");
- return 0;
-}
-
-int get_network_output_size_layer(network net, int i)
-{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- image output = get_convolutional_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- image output = get_deconvolutional_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- return get_detection_layer_output_size(layer);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- image output = get_maxpool_image(layer);
- return output.h*output.w*output.c;
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *) net.layers[i];
- return layer.c*layer.crop_height*layer.crop_width;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.outputs;
- }
- else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *) net.layers[i];
- return layer.inputs;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.inputs;
- }
- fprintf(stderr, "Can't find output size\n");
- return 0;
-}
-
+/*
int resize_network(network net, int h, int w, int c)
{
+ fprintf(stderr, "Might be broken, careful!!");
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
@@ -477,70 +279,47 @@
}else if(net.types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *)net.layers[i];
resize_dropout_layer(layer, h*w*c);
- }else if(net.types[i] == NORMALIZATION){
- normalization_layer *layer = (normalization_layer *)net.layers[i];
- resize_normalization_layer(layer, h, w);
- image output = get_normalization_image(*layer);
- h = output.h;
- w = output.w;
- c = output.c;
}else{
error("Cannot resize this type of layer");
}
}
return 0;
}
+*/
int get_network_output_size(network net)
{
int i;
- for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
- return get_network_output_size_layer(net, i);
+ for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+ return net.layers[i].outputs;
}
int get_network_input_size(network net)
{
- return get_network_input_size_layer(net, 0);
+ return net.layers[0].inputs;
}
-detection_layer *get_network_detection_layer(network net)
+detection_layer get_network_detection_layer(network net)
{
int i;
for(i = 0; i < net.n; ++i){
- if(net.types[i] == DETECTION){
- detection_layer *layer = (detection_layer *)net.layers[i];
- return layer;
+ if(net.layers[i].type == DETECTION){
+ return net.layers[i];
}
}
- return 0;
+ fprintf(stderr, "Detection layer not found!!\n");
+ detection_layer l = {0};
+ return l;
}
image get_network_image_layer(network net, int i)
{
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return get_convolutional_image(layer);
+ layer l = net.layers[i];
+ if (l.out_w && l.out_h && l.out_c){
+ return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
}
- else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return get_deconvolutional_image(layer);
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return get_maxpool_image(layer);
- }
- else if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- return get_normalization_image(layer);
- }
- else if(net.types[i] == DROPOUT){
- return get_network_image_layer(net, i-1);
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- return get_crop_image(layer);
- }
- return make_empty_image(0,0,0);
+ image def = {0};
+ return def;
}
image get_network_image(network net)
@@ -550,7 +329,8 @@
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
- return make_empty_image(0,0,0);
+ image def = {0};
+ return def;
}
void visualize_network(network net)
@@ -558,16 +338,11 @@
image *prev = 0;
int i;
char buff[256];
- //show_image(get_network_image_layer(net, 0), "Crop");
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- prev = visualize_convolutional_layer(layer, buff, prev);
- }
- if(net.types[i] == NORMALIZATION){
- normalization_layer layer = *(normalization_layer *)net.layers[i];
- visualize_normalization_layer(layer, buff);
+ layer l = net.layers[i];
+ if(l.type == CONVOLUTIONAL){
+ prev = visualize_convolutional_layer(l, buff, prev);
}
}
}
@@ -648,36 +423,9 @@
{
int i,j;
for(i = 0; i < net.n; ++i){
- float *output = 0;
- int n = 0;
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- output = layer.output;
- image m = get_convolutional_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- output = layer.output;
- image m = get_maxpool_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- output = layer.output;
- image m = get_crop_image(layer);
- n = m.h*m.w*m.c;
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- output = layer.output;
- n = layer.outputs;
- }
- else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- output = layer.output;
- n = layer.inputs;
- }
+ layer l = net.layers[i];
+ float *output = l.output;
+ int n = l.outputs;
float mean = mean_array(output, n);
float vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
--
Gitblit v1.10.0